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Veja todos os t́ıtulos publicados nesta série na página
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Catalogação elaborada pela Biblioteca do IBILCE/UNESP
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Chapter 1

Introduction

TerraME is a development environment for spatial dynamical modeling
that supports the concepts of Nested Cellular Automata (Nested-CA) [1].
TerraME uses a spatial database for data storage and retrieval. A spa-
tial dynamic model is a model whose time and locations are independent
variables. The outcomes of these models are maps that depict the spatial
distribution of a pattern or of a continuous variable. TerraME enables sim-
ulation in two-dimensional cellular spaces. Among the typical applications
of TerraME are land change and hydrological models.

This tutorial provides an introduction to the basic features of TerraME.
For a full description, see [1]. The tutorial has twelve parts. In chap-
ter 2, we present the theoretical foundations of the TerraME software. In
chapter 3, we present the TerraME architecture. In chapter 4, we show
how to install TerraME and its development environment. In chapter 5,
we present the several basic commands of the TerraME programming lan-
guage. In chapters 6 and 7, we show several examples of hydrological and
land change modeling, respectively, using TerraME. In chapter 8, we present
the function trajectory and an example of land change model. In chapter
9, we discuss how to nest cellular spaces for coupling layers of cells with
different spatial resolutions. In chapter 10, we show how to use TerraME
Hybrid Automaton to simulate systems which behavior has discrete and
continuous components. In chapter 11, we develop a rain drainage model
to exemplify how to build discrete and continuous models based on the Cel-
lular Automata Theory. Chapter 12 shows how one can develop models
with multiple temporal resolutions. At the end of each chapter, we suggest
many exercises to pratice and to test reader knowledge about TerraME con-
cepts and language. Readers interested in an introduction to the principles
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of modeling and simulation should refer to [2]-[4]. Useful discussions on
spatial dynamic modeling applications include [5]-[10].



Chapter 2

Theoretical Foundations

According to [3], modeling is the cognitive process in which the prin-
ciples of one or more theories are applied to produce a model of a real
phenomenon. A phenomenon is any concrete fact or situation of scien-
tific interest, which can be described or explained. Any model is an outcome
from the creativity of the modeler and from the knowledge she/he has about
the observed phenomenon. A model can be defined as a simplified and ab-
stract representation of a phenomenon, based on a formal description of
entities, their relations, and processes. Model simulation is the act of re-
producing the behavior of some phenomenon in a computer environment
[11] [22] [7].

During the modeling activity, the modeler will need to specify the struc-
ture (syntax) and functioning (semantics) of the idealized model. This spec-
ification should be represented according to the syntax and the semantics
of a model of computation, for example, the Multiagent model of computa-
tion or the Cellular Automata model of computation. The term model of
computation can be roughly defined as a formal and abstract definition
of a computer.

In this section, we will briefly introduce the models of computation which
serve as foundation for the TerraME software.

2.1 Finite automata

A finite automata or finite state machine is a abstract model for a
real phenomenon or system and may be defined as a directed graph Gg =
(V,Eg), called transition diagram, where V is a finite set of vertices and
Eg is a set of ordered vertices pairs named arcs [12]. Each graph vertex
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corresponds to one automaton state. If there is a transition from the state
q to the state p, as a response to one input a, them in the transition diagram
Gg there is an arc from the vertex q to the vertex p with label a. Each arc is
associated to a transition rule which determines if the transition described
by the arc will be executed.

The finite automata model uses a discrete time base [13]. The variable
t which represents time is assigned to discrete values 0,±1,±2, . . .. The
behavior of the automata is a linear sequence of events in time. Since
the set of possible states is finite, a finite automaton is not appropriate to
simulate behavior where the set of system states is potentially infinite.

Figure 2.1 shows a transition diagram for a finite automaton capable to
store a binary digit that was provided as input at the instant t − 1. The
symbol that triggers a transition is presented at the origin of the arcs. The
symbol at the middle of an arc represents the response of the machine at
the transition time.

Figure 2.1: Transition diagram for the memory machine.

Due to its simplicity, existence of an underling formal theory, and event-
driven properties, the finite automata model [13] is widely used for modeling
dynamical systems where the flow control is neither sequential nor prede-
termined because it depends on external events.

2.2 Hybrid automata

A hybrid automaton is an abstract model for a system which behavior
has discrete and continuous components, that is, a hybrid system. A hybrid
automaton consists of a finite automaton equipped with continuous variables
and continuous operations over them [14]. A hybrid automaton extends the
idea of finite automata to allow continuous change to take place between
transitions. Inside each discrete state, the automaton continuous variables
are allowed to change. We have adapted Henzinger’s hybrid automata model
as a basis for environmental models development. As used in this work, a
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hybrid automaton H is defined by the structure (X, G, init, flow, jump,
method) where:

• (a) Variables: a finite set X = {x1, . . . , xn} of real variables, mod-
eled as set of points in the Rn space. The notation X ′ = {x′1, . . . , x′n}
is used to denote the set of first derivatives. The notation X∗ =
{x1∗, . . . , xn∗} is used to denote the values of the set X at the mo-
ment of a transition between states.

• (b) Control graph: a finite directed graph G = (V, S). The vertices
in V represent the discrete states of the system and are named control
modes. The edges in S model the system discrete dynamics and are
called control switches.

• (c) Initial condition: The automaton H has an associated function
init, which is the starting point of the system. It determines the initial
control mode and the values of set X of model variables.

• (d) Flow conditions: Each control mode v ∈ V has an associated
function flow. The flow condition flow(v) defines the behavior of
the system inside each control mode and is generally specified as a
differential equation.

• (e) Jump condition: Each control switch s ∈ S has an edge labeling
function jump. The jump condition jump(s) is a predicate overX∪X∗
and determines if a control switch will be trigged;

• (f) Method: {m1, . . . ,mn} is a set of methods, called to obtain
information about the automaton internal state, or to update the
value of any variable x ∈ X.

We define a configuration of a hybrid automaton as a pair (v, x), where
v ∈ V is the current control mode and X+ = {x+

1 , . . . , x
+
n } is the current

value of its variables.
Communication between automata uses remote method invocation. Each

automaton provides a set of methods that can be called by other automata.
By calling methods of other automata, an automaton can obtain informa-
tion about their configuration. The behavior of the automaton depends on
the current control mode. This determines the flow condition that will be
executed and the subset of jump conditions that may cause a transition
between control modes.

The hybrid automaton on the figure 2.2 models a climate variation sys-
tem. The x variable represents the temperature. In the control mode
cooling, the climate is becoming cooler and the temperature is declining
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according to the flux condition dx
dt = −0, 1x. In the control mode warming,

the climate is becoming warmer and is temperature is rising according to
the flux condition dx

dt = 5 − 0, 1x. Initially, the temperature is 20oC. The
jump condition x < 19 indicates that the climate system will shift to the
’warming’ mode as soon as the temperature falls below 19oC. The jump
condition x > 21 indicates that the climate system will shift to the ’cooling’
mode as soon as the temperature is higher than 21oC.

Figure 2.2: Hybrid automata model for a climate variation system (Source:
adapted from [14])

2.3 Cellular automata

A cellular automata (CA) as conceived by [15] is comprised of a finite
two-dimensional lattice of squared cells, a finite automaton, and a neighbor-
hood relationship. Each cell is occupied by a copy of the finite automaton
which is connected to its four adjacent automata. As the same set of rules
is present on each cell, the cellular structure is said functionally homoge-
neous. As each automaton has the same neighborhood relationship in all
directions, the von Neumann CA is said isotropic. As all automata have
the same configuration of neighbors, it is also said stationary.

The finite automaton on each cell may be on a different internal state.
Hence, one cellular space region can act on a given way and receives infor-
mation from a determined direction while another can behave on a different
manner and receives information from other direction. The CA model is
useful due to its capacity to reproduce spatial changing trough diffusion
processes [16][17] and since it can simulate emergent phenomena [18].

The information flow in a CA is unidirectional. When an finite au-
tomaton is being executed, it requests information from its neighbors. This
information is combined with the internal state of the automaton to define
the action it will take. Figure 2.3(a) presents the view of a portion of a CA
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lattice, showing the CA finite automaton on different states on each cell.
Figure 2.3(b) shows the CA finite automata neighborhood relationship.

Figure 2.3: Cellular Automata: (a) same finite automaton on each cell - the
cellular structure is functionally homogeneous, and (b) same neighborhood
relationship on each cell - the cellular structure is isotropic and stationary.

2.4 Situated agents

In an attempt to capture the dynamic of phenomena whose are outcomes
of several individual interactive systems acting over the space, researchers
have proposed the use of agent-based models immersed in a cellular space
[7]. There are different and sometimes conflicting definitions of the concept
of an ’agent’ [19]. This work adopts the definition provided by [20]. An agent
is an abstract model for an entity that is embedded in an environment. The
agent is capable of sensing the environments and of acting on it. We consider
that an agent has three properties: autonomy, social ability, and reactivity.
To be autonomous, an agent has to control its actions and its internal state.
Granting social ability to an agent requires that agents communicate. The
agent should be able to perceive its environment and react accordingly.

To combine the theory of agents to that of cellular automaton, each
automaton has to perform as an agent. In this section, we consider an
agent model (situated agents) that allows embedding agents in CAs [21] A
situated agent is defined by the structure M = (S,

∑
, A, δ, λ, s0), where:

• (a) S is a set of finite internal states.

• (b)
∑

is a set of inputs (stimulus).
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• (c) A is the set of outputs (actions).

• (d) δ : S ×
∑
→ S is a function that determines the agent’s next

internal state.

• (e) λ : S → Ais the function that determines the agent’s next action.

• (f) s0 is the agent initial state.

An environment state φ be distinguished if the modeler develops a tran-
sition function δ in such way that the agent will be in internal state s for
any sequence of inputs θ∗ that leads the environment to a condition φ from
an initial condition φ0. This establishes a correlation between the agent’s
internal state and the environment’s state, and one can say that the agent
is capable of recognizing the environment state.

In this model, agents are purely reactive. The environment E generates
inputs to the agent M . The agent receives this input and performs some
actions. These actions result in the agent reaching an internal state. One
can then say that the situated agent is capable of taking decisions based on
the state of the environment. The important aspect of situated automata
theory is modeling systems such that, for each state of the environment E,
there will be a corresponding state of the automaton M . The Figure 2.4
shows the coupling between a situated agent and its environment.

Figure 2.4: A situated agent M coupled to its environment E (source: [14])



Chapter 3

The TerraME
Environment

The key part of the TerraME development environment is the Ter-
raME interpreter, as shown in Figure 3.1. It reads a program written
in the TerraME modelling language (a LUA language extension), inter-
prets the source code, and calls functions in the TerraME framework. This
framework is a set of modules written in C++ that provides functions and
classes for spatial dynamical modelling. It also links to a TerraLib spatial
database. The modeling results can be accessed by the TerraView applica-
tion [http://www.dpi.inpe.br/terraview].

The TerraME environment consists of the following parts:

• The TerraME interpreter, which executes the model source code.

• TerraView , a Geographic Information System (GIS) application devel-
oped over the TerraLib C++ library for spatial database management
[22]. It is used for vector and raster spatio-temporal data acquisition,
visualization, and analysis.

• A text editor, as the Crimson [http://www.crimsoneditor.com/] or
Notepad++[http://notepad-plus.sourceforge.net], or a Integrated De-
velopment Environment (IDE), like Eclipse [http://www.eclipse.org/],
which provide highlight syntax for the LUA programming language
[23] and, therefore, for the TerraME model source code .
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Figure 3.1: The TerraME development environment.

Figure 3.2 shows the TerraME architecture. Lower layers provide basic
services over which upper layer services are implemented.

Figure 3.2: TerraME architecture.
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In the first layer, TerraLib offers typical GIS spatial data management
and analysis services, and extra functions for temporal data handling. The
TerraME framework provides the simulation engine and the calibration and
validation services. It is an open source ANSI C++ implementation of the
Nested-CA model[1], portable for Windows and Unix-like operating sys-
tems. This framework can be used directly for model development. Since
developing models in C++ can be a challenge for non-programmers, Ter-
raME provides a high-level modelling language. The third layer of the
architecture implements the TerraME modelling language interpreter and
runtime environment. The TerraME/LUA interface extends LUA with new
data types for spatial dynamic modelling and services for model simula-
tion and evaluation. Using the LUA library API, it exports the TerraME
framework API(Application Program Interface) to the LUA interpreter, so
it recognizes the TerraME types. If needed, other C or C++ applications
(such as statistical libraries) can have their APIs exported to the LUA inter-
preter and integrated in the architecture. The last layer, called application
layer, includes the end-user models.
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Chapter 4

TerraME installation

This section shows how to install, in the Microsoft Windows platform,
the TerraME architecture and development environment, Crimson Editor,
as well its configuration.

4.1 Installing the TerraME Development En-
vironment

Initially, it’s necessary to do download TerraME RC4.zip, Crimson Ed-
itor and Database Examples, from the course web page
http://lucc.ess.inpe.br/doku.php?id=software. Decompress the TerraME
RC4.zip file to the C:\TerraME directory, execute Crimson Editor and copy
databases in the C:\TerraME\Database directory.

4.2 Configuring a TerraME Project in Crim-
son Editor

It’s necessary start Crimson Editor. In Tools menu select Conf. user
tolls. Into Preferences dialogue box select User tolls (in left side). In an
empty slot, fill with the following arguments:

• Menu text: any name, example: TerraME;

• Command: search TerraME installation directory as the workspace
directory (C:\TerraME\TerraME RC4\TerraME.exe);

• Argument: $(FileDir)\$(FileName);
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• With Windows use ”$(FileDir)\$(FileName)”;

• Initial Dir: search TerraME directory (C:\TerraME\TerraME RC4);

• Hot Key: create a short-cut to your run the model.

Type ”Ok” to finish configuration.



Chapter 5

The TerraME Modeling
Language: Basic
Commands

This section presents the basic TerraME Modeling Language mechanisms
for multiple scale spatial dynamic model representation and simulation.

5.1 TerraME as a LUA Extension

Lua is an extension programming language designed to support general
procedural programming with data description facilities [23],[24]. It also
offers good support for object-oriented programming, functional program-
ming, and data-driven programming. Being an extension language, Lua has
no notion of a ”main” program: it only works embedded in a host client.
This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables, and can register C functions to be called
by Lua code. By using C functions, Lua can be augmented to cope with
a wide range of different domains, thus creating customized programming
languages sharing a syntactical framework [25]. The TerraME Modeling
Language is a LUA Programming Language extension. It uses the LUA
extensibility mechanisms to include new data types and functions.
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5.2 An little introduction of LUA language

LUA is a dynamically typed language: variables do not have types;
only values do. There are no type definitions. The basic value types are
number(double) and string. The value nil is different from any other value
in the language and has the type nil. Functions in LUA are first-class values
. That is, a function definition creates a value of type function that can be
stored in variables, passed as arguments to other functions and returned as
results. The only structured data type is table. It implements associative
arrays, that is, arrays that can be indexed not only with integers, but with
string, double, table, or function values. For table indexing, both table.name
and table[“name”] are acceptable. Tables can be used to implement records,
arrays, and recursive data types. They also provide some object oriented
facilities, such as methods with dynamic dispatching [23].

l o c = { cover = ’ f o r e s t ’ , distRoad = 0 . 3 , distUrban = 2 } ;
l o c . des fPot = l o c . distRoad + l o c . distUrban ;
. . .
l o c . r e s e t = function ( s e l f )

s e l f . cover = ”” ;
s e l f . distRoad = 0 . 0 ;
s e l f . distUrban = 0 . 0 ;

end

Listing 5.1: The use of associative table and function values in LUA.

Program 5.1 shows the use of table and function values. The code creates
a table with three attributes (land cover, road distance, and urban center
distance) and stores it the variable loc. It calculates a new attribute and
adds it to loc (deforestation potential is the sum of the road and urban
center distances). Finally, it creates a second attribute called reset and
adds it to table loc. It is as a function that receives the table as parameter.
This is indicated by the keyword self.

LUA has a powerful syntactical tool, called constructor . When the mod-
eller writes name{. . . }, the LUA interpreter replaces it by name({. . . }),
passing the table{. . . } as a parameter to the function name( ). This func-
tion typically initializes, checks properties values and adds auxiliary data
structure or methods [23]. In Program 5.2, it constructs the type MyLoc.
When the table L is instantiated, the constructor initializes the attribute
desfPot.

function MyLoc( l o c )
l o c . des fPot = l o c . distRoad + l o c . distUrban ;
re turn l o c ;

end
l = MyLoc{ cover = ” f o r e s t ” , distRoad = 0 . 3 , distUrban = 2 } ;
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Listing 5.2: The use of the constructor in LUA.

To build spatial dynamic models, TerraME includes new value types in
LUA using the constructor mechanism. These values are: CellularSpace,
Cell, Neighborhood, Environment, Trajectorty, Automaton, Agent, State,
Jump, Flow, Timer, Event and Message.

5.3 The CellularSpace

A CellularSpace is a multivalued set of Cells. Nowadays, most spatially-
explicit modeling platforms supports the concept of regular cellular space
(RCS) for space representation, i. e., a regular two-dimensional grid of
multi-valued cells grouped into neighborhoods, where the dynamic model
rules operate and possibly change cells attribute values. Nevertheless, to
minimize border effects and cell attributes aggregation problems which are
dependent on the model chosen grid resolution [26][27], Figure 5.1, TerraME
implements the concept of (Irregular Cellular Space) (ICS) purposed in [28].

Figure 5.1: Problems due to the choice of a raster structure for space rep-
resentation: aggregation of cell attribute values and border effects. Maps
color: light means ”deforested” and dark means ”forest”.

The ICS extends the spatial structure from the RCS to support the
development of GIS integrated spatial dynamic models which uses many
space representations for supporting multiple scale modeling. The cellular
space is any irregular arrange of cells which geometrical representation may
vary from a regular grid of same size squared cells to a irregular set of
points, lines, polygons, nodes and arcs, pixels, or even voxels. Figure 5.2
shows three ICS, (1) 25× 25 km2 sparse squared cells which main attribute
is landCover (white = ”100% forest” and green = ”0% forest”); (2) each
polygon representing one Brazilian State is a cell which main attribute are
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name = ”MG” — ”SP” — ” RJ” — . . . — ”AM” the demanded area to
be deforested; and (3) each roads is a cell which main attributes are status
(red = ”paved” and orange = ”non-paved”) and brazilianSate = ”MG” —
”SP” — ” RJ” — . . . — ”AM”.

Figure 5.2: Three Irregular Cellular Spaces: (1) state polygons, (2) road
lines and (3) regular squared cells.

CellularSpaces are stored and retrieved from a TerraLib database, so the
modeller should specify the properties of the CellularSpace before using it,
as shown in Program 5.3.

−− Loads a TerraLib c e l l u l a r space
csCabecaDeBoi = CellularSpace {

dbType = ”ADO” ,
host = ” l o c a l h o s t ” ,
database = ”C:\\TerraME\\Database \\CabecaDeBoi .mdb” ,
user = ”” ,
password = ”” ,
layer = ” ce l l sLobo90x90 ” ,
theme = ” c e l l s ” ,
select = { ” he i gh t ” , ” capInf ” } ,
where = ”mask <> ’ noData ’ ”

}
csCabecaDeBoi : load ( ) ;

−− Dynamically c r ea t e s a c e l l u l a r space
cs = CellularSpace{ database = ”” , theme = ””}
for i = 1 , 2 , 1 do
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for j = 1 , 2 , 1 do
c = Ce l l { so i lType = i ∗ j }
c . x = i ;
c . y = j ;
c s : add ( c ) ;

end
end

Listing 5.3: An example of the definition and loading of a CellularSpace in
TerraME.

In the Program 5.3 is used a database called ”Cabea de Boi” available
from the TerraME site. This database contains the terrain digital model
(TDM) of a village in Minas Gerais state, Brazil. It is used in several models
examples in this tutorial. The cellular space ”csQ” has been dynamically
created and filled. It is not possible to load or save it in a database.

The host and database values indicate where the input data is stored.
The dbType value identifies the database management system (MySQL,
PostgreSQL, etc). The layer and theme values are the names of the Ter-
raLib database layer and theme used as input data. A layer is a container
of data in TerraLib. A theme is a set of spatial objects from that layer,
selected by a restriction. Selection uses a database query over attribute val-
ues, spatial relations, and temporal relations. The select property contains
the names of the cell attributes loaded into the model from the input data
set. The property where filters the data, as in SQL statements. The select
and where properties are optional.

It’s important to emphasize that TerraME currently version no exist
tools for create a CellularSpace associated to geographical databases. Thus,
is necessary to open a database in TerraView application and create a new
layer of cells from a layer exists. For details about creation of a layer of
cells see [http://www.dpi.inpe.br/ anapaula/plugin celulas/].

In Program 5.3, the code loads the CellularSpace ”csCabecaDeBoi” us-
ing csCabecaDeBoi:load() function from the ”cells” theme, part of the
”cellsLobo90x90” layer of the ”CabecaDeBoi” database. For each cell, it
loads two attributes: elevation (height) and infiltration capacity (capInf).
It loads in the CellularSpace only cells whose ”mask” attribute value is
different from ”noData”.

5.3.1 Referencing cells

A CellularSpace has a special attribute called cells. It is a one-dimensional
table of references for each Cell in the CellularSpace. The first cell index is
1. Program 5.4 shows how to refer to the i-th Cell from a CellularSpace.
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−− c i s the seventh c e l l in the c e l l u l a r space
c = csCabecaDeBoi . c e l l s [ 7 ] ;
−− Updating the a t t r i b u t e ‘ ‘ in fcap ’ ’ from the seventh c e l l
c . i n f c ap = 0 ;
csCabecaDeBoi . c e l l s [ 7 ] . infCap = 0

Listing 5.4: Examples of references to cells.

5.4 Database management for cell spaces

A TerraME CellularSpace provides three functions for database man-
agement:

• load() - loads the cell attributes from the spatial database;

• loadNeighborhood() - loads a neighborhood structure;

• save() - stores the cell attribute values in the associated TerraLib
database

The Program 5.5 shows how these functions are invoked for the
csCabecaDeBoiCellularSpace.

−−Defines a TerraLib c e l l u l a r space
csCabecaDeBoi = CellularSpace {

. . . }
−−Loads a TerraLib c e l l u l a r space
csCabecaDeBoi : load ( ) ;
−−Loads a Moore Neighborhood
CreateMooreNeighborhood( csCabecaDeBoi ) ;

for time = 1 , 10 ,1 do
. . .
csCabecaDeBoi : save ( time , ”sim” , {”water”}) ;

end

Listing 5.5: An example about loading and saving cellular spaces in
TerraME

The load() function simply loads a previously defined cellular space
in memory (see in Program 5.3 an example). The CreateMooreNeighbor-
hood function creates Moore neighborhood that comprises the eight cells
surrounding a central cell. The user can create your own neighborhood
structures using the TerraView application, including a generalized proxim-
ity matrix (GPM) where each cell has a different neighborhood [29]. For
this, it is necessary to use other functions explained in section 5.7.
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The syntax of the save function is save (time, themeName, attrNameTable).
The function uses the value time as the data timestamp. It stores data in
the new TerraLib theme that received as name the union of themeName and
time. It also saves the cell attributes in the theme table (themeName time)
with name attrName1, attrName1, . . . , attrNameN. If the third value is
empty or a nil value, all cell attributes will be saved.

The save(. . . ) function also creates a view named Result in the Ter-
raLib database. It inserts in this view a theme containing the saved data.
In code shown in Program 5.5, at each simulation step, it adds a new theme
to this view to store the current ”water” attribute value. This attributes
are saved in the themes: ”sim 1”, ”sim 2”, ”sim 3”, and so on.

5.5 The Cell Type

A Cell represents a spatial location, its properties, and its nearness rela-
tionships. A Cell is a table that includes persistent and runtime attributes.
The persistent attributes are loaded from and saved to the database. The
runtime attributes exist only in memory during the model execution. A Cell
value has two special attributes: latency and past. The latency attribute
registers the period of time since the last change in a cell attribute value. It
is useful for rules that depend on how long the cell remains in a state. The
past attribute is a copy of all cell attribute values in the instant of the last
change.

For example, Program 5.6 shows the command ”if the cell cover attribute
is abandoned land during 10 year then the cover value transit to secondary
forest”. Program 5.6 also shows a rule for simulating rain in a cell, which
adds 2mm of water to the past amount of water. In general, dynamic models
read values in the past and write values in the present.

i f ( c e l l . cover == ”abandoned” and c e l l . l a t ency >= 10 ) then
c e l l . cover = ”secFor”

end
−− Rule f o r s imu la t ing rain
c e l l . water = c e l l . past . water + 2 ;

Listing 5.6: An example the of use of the latency and past Cell attributes.

5.6 Traversing a cell space

TerraME provides a ways for traversing a cellular space. A second-order
function (a function that has a function as an argument): ForEachCell(cs,
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function()) applies the chosen function to each cell of the cellular space.
This function enables using different rules in a cellular space.

Program 5.7 show an example of the use of the ForEachCell function
in the cellular space csQ where there is constant rain (2 mm/hour) during
10 hours. At the end of each iteration, the cell space must be synchronized
(this is explained in section 5.8).

for time = 1 , 10 , 1 do
ForEachCell (

csQ ,
function ( i , c e l l )
c e l l . so i lWater = c e l l . past . so i lWater + 2
return t rue ;
end
) ;

csQ : synchronize ( ) ;
end

Listing 5.7: An example of the traversal of a cell space

5.7 The Neighborhood type

Each cell has one or more Neighborhoods to represent proximity relations.
A Neighborhood is a set of pairs (weight, cell), where cell is a neighbor Cell
and weight is the strength of this relationship. There are two ways of
creating a neighborhood in TerraME:

• By creating Moore (3x3) neighborhood, using
CreateMooreNeighborhood() function;

• By loading an existing neighborhood what can be done:

– Using the loadGALNeighborhood() function and a ”.gal” exten-
sion file, which contains a GPM previously created and saved by
the TerraView application;

– Using the loadTerraLibGPM() function to load, directly from
a TerraLib database, a GPM previously created and saved by
TerraView application.

As seen in section 5.4, the CreateMooreNeighborhood function creates
Moore neighborhood that comprises the eight cells surrounding a central
cell. By default, TerraME provides a Moore neighborhood (3x3). This
function has two parameters, CreateMooreNeighborhood(cs,index), the
name of cellular space and the neighborhood identifier or index. The cs
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parameter is the name of the cellular space. The index parameter can be
a string or a number. If this index is nil value, the TerraME admits by
default the number one. The index parameter becomes important if the
user intends to use more than one neighborhood. The code in Program 5.5
shows an example of the use this function without the index parameter.

In the latter case, the neighborhood is created from a generalized proxim-
ity matrix or GPM [29] generated by the TerraView application. TerraView
has facilities for creating these types of flexible neighborhoods. Please refer
to the TerraLib documentation for more details on GPMs. The parameter of
loadGALNeighborhood function is the directory that contains the file (for
example, ”c:\\gpm file.gal”). The parameter of loadTerraLibGPM func-
tion is a name or a number that identify the neighborhood in the TerraLib
database. Thus as in the CreateMooreNeighborhood function, this param-
eter becomes important if exist more than one neighborhood. Program 5.8
show an example of the use theses functions.

−−Defines a TerraLib c e l l u l a r space
csCabecaDeBoi = CellularSpace { . . . }
−−Loads a TerraLib c e l l u l a r space
csCabecaDeBoi : load ( ) ;

−−Loads a neighborhood GPM of the f i l e
cs : loadGALNeighborhood (”c :\\ neighborhood . ga l ” )

−−Loads a neighborhood GPM of the TerraLib database
cs : loadTerraLibGPM (”2” )

Listing 5.8: An example of neighborhood loading.

We can operate on the neighbors of each cell using the function
ForEachNeighbor(cell, function(), index), as shown in Program 5.10.
ForEachNeighbor receives a function as parameter and traverses the i-th
Neighborhood of a Cell applying this function to all cells in it. The index
parameter is the same to index parameter of the function that create a
neighborhood. Therefore, this parameter is defined as ”1” by default of the
TerraME.

In Program 5.9, the index parameter has been defined as ”v1”. The
variable weight received as parameter registers the intensity of the neigh-
borhood relationship between the cell and its current neighbor. In this
simple example, the weight of all neighbors of each cell is printed.

−−Defines a TerraLib c e l l u l a r space
csCabecaDeBoi = CellularSpace { . . . }
−−Loads a TerraLib c e l l u l a r space
csCabecaDeBoi : load ( ) ;
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−−Loads a Moore Neighborhood
CreateMooreNeighborhood( cs , ”v1” )

ForEachCell ( csQ ,
function ( c e l l )

ForEachNeighbor ( c e l l ,
function ( c e l l , neigh , weight )

p r i n t ( weight )
end ,
”v1” ) ;

r e turn t rue
end

) ;

Listing 5.9: - An example of traversing a neighborhood.

5.8 Synchronizing a cell space

TerraME keeps two copies of a cellular space in memory: one stores the
past values of the cell attributes, and another stores the current (present)
values of the cell attributes. The model equations must read (the right
side of the equation rules) the attribute values from the past copy, and
must write (the left side of the equation rules) the attributes values to the
present copy of the cellular space. At the appropriated moment, it will be
necessary to synchronize the two copies of the cellular space, copying the
current attribute values to the past copy of the cellular space. Figure 5.3
shows how synchronization works.

Figure 5.3: Synchronizing a cell space in TerraME.

Synchronization should occur after each iterationsimulation step which
effects should influences the present and future behavior of the model. For
example, in the ”Game of Life” source code, Program 5.10, after traversal
of all cells, we have a ”present” cell space which is different from the ”past”
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cell space. Before the next iteration, it is necessary to synchronize the
cell spaces. As a good modelling practice, in a neighborhood based rule,
the modeller should only update the attributes of the central cell. The
neighbor’s attributes are read-only. The flow of information is always from
the neighbors to the central cell.

5.8.1 Conway’s Game of Life using TerraME

The following is shown TerraME code of the Conway’s Game of Life.
The game uses on a field of cells, each of which has eight neighbors. A cell
is occupied or empty. The rules for deriving a generation from the previous
one are these:

• If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbors, the
organism dies (0, 1: of loneliness; 4 to 8: of overcrowding).

• If an occupied cell has two or three neighbors, the organism survives
to the next generation.

• If an unoccupied cell has three occupied neighbors, it becomes occu-
pied.

The code shown in Program 5.10 starts by creating a Moore neighbor-
hood. Then it iterates until a final time. At each iteration, it traverses the
cell space. For each cell, it applies Conway’s rules. Note that it uses the
cell’s past value as input. Then it updates the present value of the cell.
Finally, the cell space is synchronized.

csQ = CellularSpace {
. . . }

csQ : load ( ) ;
CreateMooreNeighborhood( csQ ) ;

FINAL TIME = 10

for time = 1 , FINAL TIME, 1 do
ForEachCell ( csQ ,

function ( i , c e l l )
count = 0 ;
ForEachNeighbor ( c e l l ,

function ( c e l l , ne igh )
i f ( ne igh . past . va lue == 1 and c e l l ˜=neigh )

then count = count + 1 ;
end

end
) ; −− ForEachNeighbor
−− app ly Conway ’ s r u l e s
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i f ( c e l l . past . va lue == 1) and
( ( count < 2) or ( count > 3) ) then
c e l l . va lue = 0 −− c e l l d i e s

end
i f ( c e l l . past . va lue == 0) and

( count == 3) then
c e l l . va lue = 1 −− c e l l l i v e s

end
r e turn t rue
end

) ; −− ForEachCell
csQ : synchronize ( ) ;
csQ : save ( time , ”Game” ,{” va lue ”}) ;
end −− f o r time

Listing 5.10: Conway’s Game of Life

5.9 Exercises

5.9.1 Exercise 1

Add the code lines bellow at the end of the code shown in Program 5.1
and run the model. Explain the output printed on the screen.

print("Location: "..loc.cover..",
"..loc.distRoad..", "..loc.distUrban, loc:reset());
print("Location: "..loc.cover..", "..loc.distRoad..",
"..loc.distUrban);

5.9.2 Exercise 2

Type the following two lines at the end of the code shown in Program
5.2 and run the model. Please, explain the model output.

m = MyLoccover = "deforested", distRoad = 0.8, distUrban = 6 ;
print( l );
print( "Location: "..l.cover..", "..l.distRoad..",
"..l.distUrban..", "..l.desfPot)
print( m );
print( "Location: "..m.cover..", "..m.distRoad..",
"..m.distUrban..", "..m.desfPot)
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5.9.3 Exercise 3

Using the TerraLib database ”cabeaDeBoi.mdb” answer the questions
bellow:

1. Comment the line where = ”mask <> ’noData’”. Type the following
lines at the end of the code shown in Program 5.3 and run the result-
ing model.

print("Size: "..#csCabecaDeBoi.cells);
print("Size: "..#cs.cells);

2. Assign the complete path for the file ”cabecaDeBoi.mdb” in your hard
disk to the property database from the cellular space ”csCabecaDe-
Boi” and run the model. Remember to use double bars ”\\” for file
paths specification.
For instance, database = ”c:\\TerraME\\cabecaDeBoi.mdb”.

3. Uncomment the line where = ”mask <> ’noData’” and run the model.

4. Type the lines bellow at the end of the model and run it.

c = csCabecaDeBoi.cells[7];
print("Cell: "..c.x..", "..c.y..", "..c.height);
c = cs.cells[4];
print("Cell: "..c.x..", "..c.y..", "..c.soilType);
cs.cells[4].soilType = 10;
print("Cell: "..c.x..", "..c.y..", "..c.soilType);

5. Explain the results from the above experiments.

5.9.4 Exercise 4

Looking the examples in Programs 5.5, 5.6, 5.7 and Figure 5.3 develop
and execute a model which:

• Loads the cellular space ”csQ” from the Theme ”cells” in ”cabecaDe-
Boi.mdb” TerraLib geographical database.

• Runs from time 1 to time 10 and, at each time step, accumulates 2
mm of water in the attribute ”soilWater” of each cells.

• At ech time step, saves the complete cellular space in the database.

Use the application TerraView to see the model outcomes.
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5.9.5 Exercise 5

As shown in Program 5.9, loads the cellular space ”csCabecaDeBoi” from
the spatial database ”cabecaDeBoi.mdb”, creates a Moore neighborhood to
it, and traverse the neighborhood of each cell printing the strength of their
vicinity relations.

5.9.6 Exercise 6

Load the ”gameoflife.mdb” TerraLib database as shown bellow. Each
cell will have just one attribute called ”state”.

DATABASEDIR = "C:\\TerraME\\Database\\"
csQ = CellularSpace{
dbType = "ADO";
database = DATABASEDIR.."gameoflife.mdb",
theme = "gameoflife",
}
csQ:load();

Implement the Conway’s Game of Life as in Figure 15 changing in the
code the variable ”value” by the variable ”state” loaded from the database.
For instance, the line cs:save(. . . ) will become csQ:save(time,”Game”,”state”).
Run the model. Use the TerraView application to open the database ”game-
oflife.mdb” and explore the view ”Results”. It should have 10 themes:
”Game1”, ”Game2”,. . . , ”Game10”. Edit the legend for one of these themes.
The legends should be based on the attribute ”state” from the table
”Game#.state”.
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5.9.7 Exercise 7

Let ”csQ” be a 10 by 10 cellular space defined as in code bellow. It has
been dynamically created. Can it be saved in the geographical database?

math.randomseed( os.clock() );
-- Dynamically creates a cellular space
SIZE = 10;
ALIVE PERCENTAGE = 0.2;
csQ = CellularSpace{ database = "", theme = ""}
for i = 1, SIZE, 1 do
for j = 1, SIZE, 1 do
local c = Cell{ state = 0 }
if( math.random( ) < ALIVE PERCENTAGE ) then c.state = 1;
end

c.x = i;
c.y = j;
csQ:add( c );
end
end
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Chapter 6

Several examples of rain
drainage models in
TerraME

This section is divided in four different rain drainage models. They
vary from a simple non-spatial model to a spatial model integrated in a
geographic database.

6.1 The ”Hello World” model

The simplest rain drainage model is a non-spatial model that considers
all terrain as point in the space (see Figure 6.1). The water is a continuous
variable Q that collects the rain input flow. The drainage is proportional
to Q, where K is the flow coefficient constant. It follows that ∆Qt =
2 −K ∗ ∆Qt−1, and Q =

∑t
0 ∆Qt. For a constant rain, Figure 6.2 shows

the simulation results. For each time instant, it indicates the input rain
flow (rain), the water in the system (Q), and the output flow (drainage).
The model reaches a steady state after 10 minutes in the simulation clock.
Program 6.1 presents the TerraME source code for this model.
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Figure 6.1: A non-spatial rain drainage model.

Figure 6.2: The amount of water in the system during the simulation.

C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f f i c i e n t
−− GLOBAL VARIABLES
q = 0 ; input = 0 ; output = 0 ;
−− RULES
for time = 0 , 75 , 1 do
−− rain
input = C;
−− s o i l water
q = q + input − output ;
−− drainage
output = K∗q ;
−− repor t
pr in t ( time . . ”\ t ” . . input . . ”\ t ” . . output . . ”\ t ” . . q ) ;

end

Listing 6.1: TerraME code for the non-spatial rain drainage model.
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6.2 Discrete and Continuous Dynamic mod-
els

Program 6.1 presents a finite difference model which numerically sim-
ulates rain drainage as discrete process. The independent variable ”time”
is not explicit represented in the model rules. TerraME provides the con-
structor function ”d” for the definition of differential equation based rules,
allowing for continuous process simulation. Program 6.2 shows how to de-
scribe a continuous rain drainage process in TerraME.

C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f f i c i e n t
dt = 0 . 0 1 ; −− time increment
−− GLOBAL VARIABLES
q = 0 ; input = 0 ; output = 0 ;
−− RULES
for time = 0 , 75 , 1 do
−− rain
input = d{ function ( ) r e turn C; end , 0 , 0 , 1 , dt } ;
−− s o i l water
q = d{ function ( ) r e turn input − output ; end , q , 0 , 1 , dt }
−− drainage
output = d{ function ( ) r e turn K∗q ; end , 0 , 0 , 1 , dt } ;
−− repor t
pr in t ( time . . ”\ t ” . . input . . ”\ t ” . . output . . ”\ t ” . . q ) ;

end

Listing 6.2: TerraME code for the non-spatial continuous rain drainage
model.

The model in Program 6.2 can be further simplified as shown in Figure
6.3. The constructor ”d” has four obligatory parameters and a fifth op-
tional parameter. The first parameter is a function which returns the real
number and has the same formula of the differential equation that simu-
lates the process. It has two optional parameters, the independent and the
dependent variables of the differential equation, as in Program 6.3. The
second parameter is the initial condition of the process been simulated. In
Program 6.2, at each time step, the initial conditions are 0, q and 0 for
the rain, soil water accumulation and drainage processes, respectively. The
third and fourth parameters define the minimum and maximum values of
the integration interval. In Program 6.2, each process is simulated from the
time 0 to the time 1. In Program 6.3, the soil water accumulation process
is simulated from the time 0 to 75. The fifth parameter is the independent
variable increment value that should be used in the numeric integration
methods used by the TerraME engine to simulate the models. The DELTA
TerraME global variable defines the default value goal to 0.2. In Program
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6.3 model, the time increment value is 0.1. Change the value of the INTE-
GRATION METHOD TerraME global variable, the modeler will select the
numeric integration method which will be used for continuous model sim-
ulation. The possible methods are: ”Euler”, ”Heum” and ”RugeKutta”.
The default method is ”Euler”.

C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f f i c i e n t
dt = 0 . 0 1 ; −− time increment
−− GLOBAL VARIABLES
q = 0 ; input = 0 ; output = 0 ;
−− RULES
dt = DELTA/2 ;
−− INTEGRATION METHOD = ”Euler ” ;
−− INTEGRATION METHOD = ”Heum”;
−− INTEGRATION METHOD = ”RugeKutta ” ;
q = d{ function ( t , q ) re turn C − K∗q ; end , 0 , 0 , 75 , dt } ;
p r i n t ( q ) ;

Listing 6.3: Writing differential equations for continuous process simulation
in TerraME.

6.3 A simple spatial model

We now consider a 1D model. Space is modeled as a list of locations
Q = qi|∀i = 1..N , where N = 10. The model executes the same rules with
the same parameters in each space location. The temporal variation of
water in each location is equal to the graphic shown in 6.2.

Figure 6.3: A 1D spatial discrete rain drainage model.
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−− CONSTANTS (MODEL PARAMETERS)
C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f i c i e n t
−− GLOBAL VARIABLES
q = {} ; −− a 1D t a b l e
−− RULES
for i = 1 , 10 , 1 do q [ i ] = 0 ; end
for time = 1 , 20 , 1 do
−− rain and drainage
for i = 1 , 10 , 1 do

q [ i ] = q [ i ] + C;
q [ i ] = q [ i ] − K∗q [ i ] ;

end
−− repor t : s o i l water (Q)

pr in t (” t : ” . . time ) ;
for i = 1 , 10 , 1 do pr in t (” [ ” . . i . . ” ] : ” . . q [ i ] ) ; end

end

Listing 6.4: TerraME source code for a 1D model.

Program 6.4 presents the TerraME source code for the unidimensional
spatial drainage model. The variable q is a list, which locations qi have
been initialized with the value 0 (zero). The ”for ...end” statement from
TerraME Modelling Language has been used to traverse the list.

6.4 A 2D spatial model

We can now extend the model to a 2D grid. Figure 6.4 shows the concep-
tual model for a 2D spatial drainage model, using a gridQ = qi,j |i = 1..nand∀j = 1..n.

Figure 6.4: A 2D spatial rain drainage model.

The TerraME source code for this model is in Program 6.5. The variable
q represents s a bidimensional grid. To traverse the space representation
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the modeller has used a block of code containing two nested ”for ...end”
statements.

−− CONSTANTS (MODEL PARAMETERS)
C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f f i c i e n t
−− GLOBAL VARIABLES
q = {} ;
−− RULES
for i = 1 , 10 , 1 do

q [ i ] = {} ;
for j = 1 , 10 ,1 do

q [ i ] [ j ] = 0 ;
end

end
for time = 0 , 75 , 1 do −− rain and drainage

pr in t (” t : ” . . time ) ;
for i = 1 , 10 , 1 do

for j = 1 , 10 ,1 do
q [ i ] [ j ] = q [ i ] [ j ] + C;
q [ i ] [ j ] = q [ i ] [ j ] − K∗q [ i ] [ j ] ;
−− repor t : s o i l water (Q)
pr in t (” i : ” . . i . . ” , j : ” . . j . . ” : ” . . q [ i ] [ j ] )
end

end
end

Listing 6.5: The TerraME source code for the 2D drainage model.

6.5 A spatial model integrated to a geographic
database

In previous examples, we have not discussed how to read data. TerraME
reads data from a TerraLib spatial database, as described in section 2. Pro-
gram 6.6 presents the TerraME code of the rain drainage model integrated
to a TerraLib database.
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Figure 6.5: The spatial rain drainage model integrated to a geographical
database.

The cell space csQ is retrieved from a layer in a TerraLib geographic
database. For this example, we use the ”cabecaDeBoi.mdb” database, avail-
able from the TerraME site. Each cell has an attribute called soilWater.
The function load(), retrieves data and initializes the cells. We use the
ForEachCell function to traverse the cellular space. The functions save()
stores the soil water distribution at each simulation time step. A view called
”Result” is created in the database. At each simulation step, it adds a new
theme to this view to store the current values of the ”soilWater” attribute.
The reader may use the TerraView software to explore the data.

−− CONSTANTS (MODEL PARAMETERS)
C = 2 ; −− rain / t
K = 0 . 4 ; −− f l ow c o e f f i c i e n t
FINAL TIME = 24 ;

−− PART 1 − Retr ieve the c e l l space from the database
csQ = CellularSpace{

dbType = ”ADO” ,
database = ”c :\\TerraME\\Database \\ cabecaDeBoi .mdb” ,
theme = ” c e l l s ” ,
select = { ” he i gh t ” , ” soi lWater ” }

}

−− RULES
csQ : load ( ) ;
CreateMooreNeighborhood( csQ ) ;
csQ : synchronize ( ) ;

ForEachCell ( csQ ,
function ( i , c e l l )

c e l l . so i lWater = 0 ;
re turn t rue ;

end) ;
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for t = 1 , FINAL TIME, 1 do
−− PART 2: I t ’ s ra in ing in the high areas
ForEachCell ( csQ ,

function ( i , c e l l )
i f ( c e l l . he ight > 200) then

c e l l . so i lWater = c e l l . past . so i lWater + C;
end
r e turn t rue ;

end) ;
csQ : synchronize ( ) ;

−− PART 3: crea t e a temporary v a r i a b l e to s t o r e the f l ow
ForEachCell ( csQ ,

function ( i , c e l l )
c e l l . f l ow = 0 ;
re turn t rue ;

end) ;

−− Ca lcu la t e the drainage and the f l ow
ForEachCell ( csQ ,

function ( i , c e l l )
−− PART 4: c a l c u l a t e the drainage
c e l l . so i lWater = c e l l . past . so i lWater − K∗ c e l l . past .

so i lWater ;
−− count the lower ne ighbors
countNeigh = 0 ;
ForEachNeighbor ( c e l l ,

function ( c e l l , ne igh )
i f ( c e l l ˜= neigh ) and ( c e l l . he ight >= neigh . he ight )

then countNeigh = countNeigh + 1 ;
end

end) ;

−− PART 5: c a l c u l a t e s the f l ow to ne ighbors
i f ( countNeigh > 0) then

f l ow = c e l l . so i lWater / countNeigh ;
−− send the water to ne ighbors
ForEachNeighbor ( c e l l ,

function ( c e l l , ne igh )
i f ( c e l l ˜= neigh )
and ( c e l l . he ight > neigh . he ight ) then

neigh . f low = neigh . f low + f low ;
end

end) ;
end

end
) ; −−ForEachCell

ForEachCell ( csQ ,
function ( i , c e l l )

c e l l . so i lWater = c e l l . f low ;
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r e turn t rue ;
end) ;

csQ : synchronize ( ) ;
−− repor t : s o i l water
pr in t (” t : ” . . t ) ;
i f ( t == FINAL TIME) then

csQ : save ( t , ”water” , {” soi lWater ”} ) ;
end

end

Listing 6.6: The TerraME source code for a spatial model inside a
geographical database.

6.6 Exercises

6.6.1 Exercise 1

Implement and run the rain drainage model shown in Program 6.1.
When the model reaches the steady state? Run the model for several flow
coefficient values = 0, 0.25, 0.5, 0.75, 1. What happens?

6.6.2 Exercise 2

Implement the rain drainage model shown in Program 6.2. Run the
model for several flow coefficient values = 0, 0.25, 0.5, 0.75, 1. Compare
the outcomes with these produced by the model in Figure 18. With the flow
coefficient value = 0.25, run the model for several time increment values, dt
= 0, 0.1, 0.001, 1. What can be concluded?

6.6.3 Exercise 3

Implement the model shown in Program 6.3. Run it using different nu-
meric integration methods, INTEGRATION METHOD = ”Euler”, ”Heum”,
”RugeKutta” . Explain the model outcomes.

6.6.4 Exercise 4

Implement and run the model shown in Program 6.4. Compare the
model results with the ones produced by the model in Program 6.1.
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6.6.5 Exercise 5

Implement and run the model shown in Program 6.5. Compare the
model outcomes with the ones produced by the model shown in Program
6.4.

6.6.6 Exercise 6

Implement and run the model shown in Program 6.6. Use the TerraView
application to explore the model outcomes. Look for the theme ”water24”
in the view ”Result” from the ”cabecaDeBoi.mdb” database. Generate a
legend for the attribute ”water24.soilWater”. Explain the model result.



Chapter 7

Several examples of land
change models in
TerraME

This section presents TerraME examples for a different problem: mod-
elling of land change. We will consider the database “amazonia.mdb”, which
contains a 100 x 100 km2 cell space with data related to deforestation in
Amazonia. Figure 7.1 shows a picture of the deforestation for each cell.
This data is a simplified version of the database used in [30]. The attributes
of the cell space are:

• defor: percentage of deforestation;

• pop dens 96: population density from 1996 census;

• pop tx urban 96 : urbanization rate from 1996 census;

• pop pc migr 91 96 : migration rate from 1991 to 1996;

• agr area small : percentage of cultivated area for small farms;

• agr area medium: percentage of cultivated area for medium farms;

• agr area large: percentage of cultivated area for large farms;

• dist urban areas: average distance to urban areas;

• dist roads: average distance to roads;
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• conn markets inv p: strength of connection to markets

• clima humi min 3 ave: humidity in the three driest months;

• clima precip min 3 a: precipitation in three driest months;

• soils fert B1 : average soil fertility

• prot all1 : percentage of protected areas in 1996

• prot all2 : proposed percentage of protected areas in 2006

Figure 7.1: A cell space of deforestation in Amazonia.

The model considers a fixed demand for change, which will be allocated
spatially. It calculates the potential for change at each cell. Then, it divides
the demand as a proportion of the potential of change. We will consider
three models: a simple diffusive model, a simple regression model, and a
spatial regression model.

7.1 A spatial diffusive model for land change

Consider a spatial model that allocates 30.000 km2 of deforestation in
Amazonia for 10 years. The potential of change for each cell is the average
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of neighbour’s deforestation. The allocation function uses is proportional
to the cell’s potential, divided by the total potential for change. The result
is shown in Figure 7.2 and the model is shown in Program 7.1. It works as
follows:

1. Reads the data from the database (command csQ = CellularSpace{. . . );

2. Creates a 3x3 neighbourhood (CreateMooreNeighbourhood (csQ));

3. Defines a new attribute for potential for change (using the command
ForEachCell( .. cell.pot = 0 . . . );

4. Calculate the change potential for each cell. This requires a traversal
of the cell space (for...). The potential for change for a cell is the
average of its neighbour’s deforestation.

5. Assign the demand based on the potential for each cell. This needs a
second for loop. This loop is inside an allocation loop that considers
the case where the change potential for a cell may exceed 100% of
deforestation.

6. Syncronize the cell space after each time step and save the last time
step.

Figure 7.2: Result of the diffusive model after 10 years.
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−− CONSTANTS (MODEL PARAMETERS)
CELL AREA = 10000;
FINAL TIME = 10 ;
ALLOCATION = 30000;
LIMIT = 30 ;
−− GLOBAL VARIABLES
csQ = CellularSpace{

dbType = ”ADO” ,
host = ” l o c a l h o s t ” ,
database = ”c :\\TerraME\\Database \\amazonia .mdb” ,
user = ”” ,
password = ”” ,
layer = ” ce l u l a s100 ” ,
theme = ”dinamica” ,
select = {” de for ”}

}
−− RULES
csQ : load ( ) ;
CreateMooreNeighborhood( csQ ) ;
csQ : synchronize ( ) ;

for time = 1 , FINAL TIME, 1 do
pr in t (” t : ” . . time ) ;

−− i n i t i a l i z e the p o t e n t i a l
ForEachCell ( csQ ,

function ( i , c e l l )
c e l l . pot = 0 ;

end
) ;

t o t a l p o t = 0 ;
ForEachCell ( csQ ,
−− Ca lcu la t e the change p o t e n t i a l f o r each c e l l
function ( i , c e l l )

countNeigh = 0 ;
ForEachNeighbor ( c e l l ,

function ( c e l l , ne igh )
−−The p o t e n t i a l o f change f o r each c e l l i s
−−The average o f neighbor ’ s d e f o r e s t a t i o n
−−Fu l l y d e f o r e s t e d c e l l s have no p o t e n t i a l

i f ( c e l l . d e f o r < 1 .0 ) then
c e l l . pot = c e l l . pot + neigh . de f o r
countNeigh = countNeigh + 1

end
end

) ; −− ForEachNeighbor
i f ( c e l l . pot > 0 ) then
−− increment the t o t a l p o t e n t i a l
c e l l . pot = c e l l . pot / countNeigh ;
t o t a l p o t = t o t a l p o t + c e l l . pot ;
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end
end

) ; −−ForEachCell

−− a j u s t the demand fo r each c e l l so t ha t
−− the maximum demand fo r change i s 100%
−− ad ju s t the demand so tha t exces s demand i s
−− a l l o c a t e d to the remaining c e l l s
−− t he re i s an error l im i t (30 km2 or 0.1%)
total demand = ALLOCATION;
while ( total demand > LIMIT ) do

pr in t (” tota l demand : ” . . total demand ) ;
ForEachCell ( csQ ,

function ( i , c e l l )
i f ( c e l l . pot > 0) then

p r o p c e l l = c e l l . pot / t o t a l p o t
newarea = p r o p c e l l ∗ total demand
c e l l . d e f o r = c e l l . past . de f o r +

newarea/CELL AREA
i f ( c e l l . d e f o r >= 1) then

t o t a l p o t= t o t a l p o t − c e l l . pot
c e l l . pot = 0 ;
exc e s s= ( c e l l . d e f o r −1)∗CELL AREA
c e l l . d e f o r = 1

else
exc e s s = 0 ;

end
−− ad ju s t the t o t a l demand
total demand = total demand − ( newarea − exc e s s )

end
end

) ; −− ForEachCell
csQ : synchronize ( ) ;
end

i f ( time == FINAL TIME) then
csQ : save ( time , ” de for1 ” , {” de for ”} ) ;

end
end

Listing 7.1: The TerraME source code for a simple diffusive land change
model.

7.2 A regression model for land change

We will now consider a regression model based on three driving forces:
distance to urban centers, connection to markets, and protected areas. The
potential for change is based a linear regression between the cell’s current
deforestation and the expected deforestation, as follows:
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• Calculate the expected deforestation as

expected = −0.45× log(D) + 0.26× (C)− 0.14× (P ) + 2.313

where:

D = distancetourbanareas, C = connectiontomarkets and P = protectedareas

• Calculate the potential for change as

cell.pot = expected− cell.defor

• Normalize the potentials (since there may be negative potentials) and
allocate 30.000 km2 for 10 years.

This model is a simplified version of the detailed deforestation model
developed by [26]. Please see that document for details on the model. The
model code is shown in Program 7.2 and the result in Figure 7.3.

−− CONSTANTS (MODEL PARAMETERS)
CELL AREA = 10000;
FINAL TIME = 10 ;
ALLOCATION = 30000;
LIMIT = 30 ;
−− GLOBAL VARIABLES
csQ = CellularSpace{

dbType = ”ADO” ,
host = ” l o c a l h o s t ” ,
database = ”c :\\TerraME\\Database \\amazonia .mdb” ,
user = ”” ,
password = ”” ,
layer = ” ce l u l a s100 ” ,
theme = ”dinamica” ,
select= {” de for ” , ” d i s t u r ban a r ea s ” ,

” conn markets inv p ” , ” p r o t a l l 2 ” }
}
−− RULES
csQ : load ( ) ;
CreateMooreNeighborhood( csQ ) ;
csQ : synchronize ( ) ;

for time = 1 , FINAL TIME, 1 do
pr in t (” t : ” . . time ) ;
−− i n i t i a l i z e the p o t e n t i a l
ForEachCell ( csQ ,

function ( i , c e l l )
c e l l . pot = 0

end
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) ;

t o t a l p o t = 0 ;
ForEachCell ( csQ ,

function ( i , c e l l )
−− The p o t e n t i a l f o r change i s the re s idue o f a
−− l i n e a r r e g r e s s i on between the c e l l ’ s
−− current and expec ted d e f o r e s t a t i o n
−− according to the f o l l ow i n g model :
i f ( c e l l . d e f o r < 1 . 0 ) then

expected =
− 0 .45∗math . log10 ( c e l l . d i s t u r b a n a r e a s )
+ 0.26∗ c e l l . conn markets inv p
− 0 .14∗ c e l l . p r o t a l l 2
+ 2 . 3 1 3 ;
i f ( expected > c e l l . d e f o r ) then

c e l l . pot = expected − c e l l . d e f o r
t o t a l p o t = t o t a l p o t + c e l l . pot

end
end

end
) ; −− ForEachCell

−−Adjust the demand so tha t exces s demand i s
−−Al loca t ed to the remaining c e l l s in an error l im i t (0.1%)

total demand = ALLOCATION
while ( total demand > LIMIT ) do

ForEachCell ( csQ ,
function ( i , c e l l )

i f ( c e l l . pot > 0) then
p r o p c e l l = c e l l . pot / t o t a l p o t
newarea = p r o p c e l l ∗ total demand
c e l l . d e f o r = c e l l . past . de f o r +

newarea/CELL AREA
i f ( c e l l . d e f o r >= 1) then

t o t a l p o t = t o t a l p o t − c e l l . pot
c e l l . pot = 0
exce s s = ( c e l l . d e f o r − 1) ∗CELL AREA
c e l l . d e f o r = 1

else
exc e s s = 0 ;

end
−− ad ju s t the t o t a l demand
total demand=total demand −newarea +exce s s
end

end
) ; −−ForEachCell
csQ : synchronize ( ) ;

end

i f ( time == FINAL TIME) then
csQ : save ( time , ” de fo r2 ” , {” de for ”} ) ;
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end
end

Listing 7.2: The TerraME source code for a linear regression land change
model.

Figure 7.3: Result of land change model based on linear regression.

7.3 A combined diffusive/regression model

We will now consider a regressive and difusive model based on four driv-
ing forces: the deforestation on the neighbours, distance to urban centres,
connection to markets, and protected areas. For a detailed discussion of the
impact of neighbours on deforestation, see [26]. The potential for change is
based on the residues of a spatial regression between the cell’s current defor-
estation and the expected deforestation according to the following model:

• Calculate the expected deforestation as

expected = 0.73×log10(AV ERAGE(N))−0.15×log10(D)+0.05×(C)−0.07×(P )+0.7734

where N = neighbordeforestation, D = distancetourbancentres,
C = connectiontomarkets and P = protectedareas
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• Calculate the potential for change for each cell as

potential = expected− deforestation

• Allocate 30.000 km2 for 10 years for all cells with positive potentials.
Note there may be negative potentials, which are cells with more de-
forestation than expected. In this case, there is no change for the
cell.

This model is a simplified version of the detailed deforestation model
developed by [26]. The model code is shown in Program 7.3 and the result
in Figure 7.4.

−− CONSTANTS (MODEL PARAMETERS)
CELL AREA = 10000
FINAL TIME = 10
ALLOCATION = 30000
LIMIT = 30

−− GLOBAL VARIABLES
csQ = CellularSpace{

dbType = ”ADO” ,
host = ” l o c a l h o s t ” ,
database = ”c :\\TerraME\\Database \\amazonia .mdb” ,
user = ”” ,
password = ”” ,
layer = ” ce l u l a s100 ” ,
theme = ”dinamica” ,
select= {” de for ” , ” d i s t u r ban a r ea s ” ,

” conn markets inv p ” , ” p r o t a l l 2 ” }
}

−− RULES
csQ : load ( ) ;
CreateMooreNeighborhood( csQ ) ;
csQ : synchronize ( ) ;

for time = 1 , FINAL TIME, 1 do
pr in t (” t : ” . . time ) ;
−− i n i t i a l i z e the p o t e n t i a l
ForEachCell ( csQ ,

function ( i , c e l l )
c e l l . pot = 0
c e l l . ave ne igh = 0

end
) ;

ForEachCell ( csQ ,
function ( i , c e l l )
−− Ca lcu la t e the average d e f o r e s t a t i o n
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countNeigh = 0 ;
ForEachNeighbor ( c e l l ,

function ( c e l l , ne igh )
−−The p o t e n t i a l o f change f o r each c e l l i s
−−the average o f neighbors ’ d e f o r e s t a t i o n .

i f ( c e l l . d e f o r < 1 .0 ) then
c e l l . ave ne igh = c e l l . ave ne igh + neigh . de f o r
countNeigh = countNeigh + 1

end
end

) ; −− ForEachNeighbor
−− Find the average d e f o r e s t a t i o n
i f ( c e l l . d e f o r < 1 .0 ) then

c e l l . ave ne igh = c e l l . ave ne igh / countNeigh
end

end
) ; −− ForEachCell

t o t a l p o t = 0 ;
ForEachCell ( csQ ,

function ( i , c e l l )
−− Po t en t i a l f o r change
i f ( c e l l . d e f o r < 1 . 0 ) then

expected = 0.73∗ c e l l . ave ne igh
− 0 .15∗math . log10 ( c e l l . d i s t u r b a n a r e a s )
+ 0.05∗ c e l l . conn markets inv p
− 0 .07∗ c e l l . p r o t a l l 2 + 0 . 7 7 3 4 ;

i f ( expected > c e l l . d e f o r ) then
c e l l . pot = expected − c e l l . d e f o r
t o t a l p o t = t o t a l p o t + c e l l . pot

end
end

end
) ; −− ForEachCell

−− ad ju s t the demand fo r each c e l l
total demand = ALLOCATION
while ( total demand > LIMIT ) do

pr in t (” tota l demand : ” . . total demand ) ;
ForEachCell ( csQ ,

function ( i , c e l l )
i f ( c e l l . pot > 0) then

p r o p c e l l = c e l l . pot / t o t a l p o t
newarea = p r o p c e l l ∗ total demand
c e l l . d e f o r = c e l l . past . de f o r +

newarea/CELL AREA;
i f ( c e l l . d e f o r >= 1) then

t o t a l p o t= t o t a l p o t −c e l l . pot
c e l l . pot = 0
exce s s = ( c e l l . d e f o r − 1) ∗CELL AREA
c e l l . d e f o r = 1

else
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exc e s s = 0 ;
end

−− ad ju s t the t o t a l demand
total demand = total demand − newarea + exce s s ;

end
end

) ; −−ForEachCell
csQ : synchronize ( ) ;

end

i f ( time == FINAL TIME) then
csQ : save ( time , ” de fo r3 ” , {” de for ”} ) ;

end
end

Listing 7.3: Code for land change model based on spatial regression.

Figure 7.4: Result of land change model based on spatial regression.

7.4 Exercises

7.4.1 Exercise 1

Implement and run the model shown in Program 7.1. Use the Ter-
raView application to explore the model outcomes in the ”amazonia.mdb”
geographical database. Look for the themes ”defor#” in the view ”Result”.
Explain the observed results.
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7.4.2 Exercise 2

Implement and run the model shown in Program 7.2. Use the Ter-
raView application to explore the model outcomes in the ”amazonia.mdb”
geographical database. Look for the themes ”defor2 #” in the view ”Re-
sult”. Explain the observed results.

7.4.3 Exercise 3

Implement and run the model shown in Program 7.3 . Use the Ter-
raView application to explore the model outcomes in the ”amazonia.mdb”
geographical database. Look for the themes ”defor3 #” in the view ”Re-
sult”. Explain the observed results.

7.4.4 Exercise 4

Compare the outcomes produced by the models shown in Programs 7.1,
7.2 and 7.3.
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The Trajectory type

The trajectory function is useful to reproduce spatial patterns or repre-
sent process preferential directions (anisotropy). This function is also useful
to define change suitability surfaces, which associate each Cell to a real num-
ber that indicates how prone the Cell is to specifics types of change (forest
to pasture, pasture to abandonment, pasture to urban, etc).

The trajectory function is defined by three parameters:

• A CellularSpace over which the trajectory will take place;

• A function that includes cells in the trajectory;

• A function that orders the cells included in the trajectory.

The first function receives a Cell as parameter and returns a Boolean
value (true or false). It is used to filter the Cells. If this function returns
true, the cell is included in the trajectory. The second function receives two
Cell values as parameters and returns true if the first one is greater than
the second. If the second function is not defined, the Cells are traversed
from North to the South and from West to the East. If both functions are
not defined, all Cells are included in the trajectory.

Program 8.1 shows an example of trajectory function useful to simulate
the deforestation process. A trajectory over the CellularSpace (csQ) is
defined by two functions. The first function select only cells whose land
cover is ”forest”. The second orders the Cells according to their distance
to the nearest road, making Cells closer to roads more suitable to change.
Figure 8.1 illustrate two different trajectories, the former is defined as in
Program 8.1, and the latter has a different ordering function: ”function(
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c1, c2) return c1.distUrbanCenter < c2.distUrbanCenter; end”. Light gray
cells are traversed before dark gray cells.

−− Define a Ce l lu l a rSpace
csQ = CellularSpace{
. . . }

csQ : load ( )

−−Define a t r a j e c t o r y
i t = Tra jec tory {

csQ ,
function ( c e l l )

r e turn c e l l . cover == ” f o r e s t ”
end ,

function ( c1 , c2 )
re turn c1 . d i s t r o a d s > c2 . d i s t r o a d s
end
}

Listing 8.1: Defining a Trajectory in TerraME Modeling Language.

Figure 8.1: Change potential surfaces defined through Trajectory functions
based on (a) distance to road or (b) distance to urban centers. The gray
scale surface reflects the potential for change of each cell: dark gray means
low potential for change and light gray means high change potential.

Program 8.2 shows how to use Trajectories values. Instead of pass a
CellularSpace value as the first parameter in a ForEachCell function call,
one may pass a Trajectory. In this example, the trajectory ”it” defined in
Program 8.1 is used to simulate deforestation around roads.

demandByYear = { 3 , 5 , 6 , 7 , 8 , 4 , 3 , 3 , 3 , 3}

for time = 1 , 10 , 1 do
demand = ( demandByYear [ time ]/100 ) ∗ #csQ . c e l l s ;
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while (demand >= 1) do
ForEachCell (

i t ,
function ( i , c e l l )

i f ( demand >= 1) then
c e l l . cover = ” de f o r e s t e d ” ;
demand = demand − 1 ;

else
r e turn f a l s e ;

end
r e turn t rue ;

end
) ;

end
csQ : synchronize ( ) ;

end

Listing 8.2: An example of spatial pattern simulation using the Trajectory
type.

8.1 Exercises

8.1.1 Exercise 1

Based on Programs 8.1 and 8.2 develop a deforestation model over the
”amazonia.mdb” geographical database. The deforestation rate by year is
given by demandByYear = 3, 5, 6, 7, 8, 4, 3, 3, 3, 3. Use a Trajectory to
simulate the deforestation cause only by urban centers expansion. Run the
model and use the TerraView application to explore the model results.

8.1.2 Exercise 2

Based on Figures 8.1 and 8.2 develop a deforestation model over the
”amazonia.mdb” geographical database. The deforestation rate by year is
given by demandByYear = 3, 5, 6, 7, 8, 4, 3, 3, 3, 3. Use a Trajectory to
simulate the deforestation around the roads. Run the model and use the
TerraView application to explore the model results.
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Chapter 9

Nested cellular spaces

TerraME do not have nested cells concept but only scales are nested
(scale or Environment), and all its contents: cell spaces, automata and
schedulers. TerraME provides necessary tools to create any spatial structure
using the neighbor concept: the cells inside a cellular environment could
have neighbor in any other cellular environment

Suppose the cellular spaces ”cs1” and ”cs2” as shown in Figure 9.1. Each
cellular space ”cs1” has 4 cells resolution finest in cellular space ”cs2”. A
one-way (cs1 to cs2) was used to implement the concept of nesting of cells
and allow downscaling. If ”cs2” cells needed to know your ”parent” cell to
allow ”upscaling”, then a two-way vicinity should be used, including the
cells ”cs1” as neighboring of ”CS2”.

Figure 9.1: Nested cells by neighborhood relationships.
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Functionality nested cellular spaces can easily be used in the models
through the combination of functions ”ForEachCell” and ”ForEachNeigh-
bor, as in Program 9.1.

ForEachCell ( cs1 ,
function ( i , c e l l )

ForEachNeighbor ( c e l l ,
function ( c e l l , neigh , weight )
−− neigh i s a n e s t e d c e l l
−− i n s e r t the code

end ,
ı́ndex
−− r e f e r s to v i c i n i t y index used
−− to implement the s t r u c t u r e

end
) ;

Listing 9.1: How to traverse nested cellular spaces.

The source code in Program 9.2 shows how neighborhoods can be cre-
ated respecting the Cartesian (structure) coordinate system allocated by
the TerraLib GIS Library. In the code, a neighborhood Moore is created
for the cell space received as parameter.

−− Creates a Moore neighborhood fo r each c e l l
function CreateMooreNeighborhood( cs , name )

for i , c e l l in i p a i r s ( cs . c e l l s ) do
l o c a l ne igh = Neighborhood ( ) ;
l o c a l l i n = −1;
while ( l i n <= 1 ) do

l o c a l c o l = −1;
while ( c o l <= 1 ) do
−− add neighbor
l o c a l index = TeCoord{ x = ( c e l l . x + c o l ) , y = (

c e l l . y + l i n ) } ;
ne igh : addCel l ( index , cs , 1/9 ) ;

−− weight = 0.111111 (9 ne ighbors )
c o l = c o l + 1 ;

end
l i n = l i n + 1 ;

end
c e l l : addNeighborhood ( neigh , name ) ;
end

end

Listing 9.2: How to define neighborhoods around geographical locations.

TerraME provides some other functions for neighborhood definition and
for cellular space coupling through neighborhood relationships:

• Create3x3StationaryNeighborhood( cs,filterF, weightF, name ) cre-
ates a 3x3 stationary neighborhood for each ”cs” cellular space cell.
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• CreateMxNStationaryNeighborhood( M, N, cs,filterF, weightF, name
) creates a M (collumns) by N (rows) stationary neighborhood for each
cell in the ”cs” cellular space.

• SpatialCouppling( M, N, cs1,cs2, filterF, weightF, name ) creates a M
(collumns) by N (rows) stationary neighborhood between cells from
two different cellular spaces, the ”cs1” and ”cs2”, one-way neighbor-
hood relations are defined from ”cs1” to ”cs2”.

The parameters ”cs”, ”filterF(cell, neigh) → Boolean”, ”wheighF(cell,
neigh) → Real” and ”name” are, respectively, the cellular space over which
the neighborhood will be created, a Boolean function for filtering cells that
will take place in the neighborhood based on their properties and on the
properties each one of their neighbors, a numeric function that assigns a
weight to each one-way neighborhood relationship and a identifier (or index
) for the neighborhood been created. Program 9.3 illustrate the use of the
function ”Create3x3StationaryNeighborhood” for building a neighborhood
useful for drainage simulation: only lower neighbors are included in the cell
neighborhood and the weight these relationships are calculate based on a
slope metric. This weigh could be used to direct flow of water among the
lower neighbors.

−− Creates a 3x3 Neighborhood based on the c e l l ” s l ope ”
−− only lower ne ighbors are cons idered
−− Creates a 3x3 Neighborhood based on the c e l l ” s l ope ”
Create3x3Stat ionaryNeighborhood (

csQ ,
function ( c e l l , ne igh )

re turn neigh . a l t i m e t r i a < c e l l . a l t i m e t r i a ;
end ,
function ( c e l l , ne igh )

re turn ( c e l l . a l t i m e t r i a − neigh . a l t i m e t r i a ) /
( c e l l . a l t i m e t r i a + neigh . a l t i m e t r i a ) ;

end ,
” s l ope ”

) ;

Listing 9.3: How to define neighborhoods around geographical locations.

9.1 Exercises

9.1.1 Exercise 1

Using the ”cabecaDeBoi.mdb” geographical database load a cellular
spaces from the theme ”cells” and build a 4 by 4 neighborhood in which the
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weights of the vicinity relations depends on the terrain slope, as in Program
9.3. Then, traversse the cellular space printing the weight calculated for
each neighbor relation.

9.1.2 Exercise 2

Create a new layer of cells in the ”cabeaDeBoi.mdb”. The cell resolution
should be 180 by 180 meters. Use the TerraView plugin called ”fill cell” to
generate the new attribute ”height” for each cell. Use the attribute ”height”
from the ”cells” theme as input data and the operation ”average value” to
calculate the value the value of the new attribute in each space location.
Create the theme ”myCells” to visualize the terrain represented by the new
layer of cells. Then, load two cellular space from the themes ”cells” and
”myCells”. Couple both cellular space building a nested cellular space as
shown in Figure 9.1, where ”cs1” is ”cells” and ”cs2” is ”myCells”. Finally,
traverse the cellular space ”cells” printing the height of each neighbor as
cell from ”cells” has in ”myCells”.
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Hybrid Automata

A hybrid automaton is a dynamical system whose state has both a dis-
crete, which is updated in a sequence of steps, and a continuous component,
which evolves over time, so it can be viewed as an infinite-state transition
system [31]. The concept of hybrid comes from the bivalence between dis-
crete and also continuous [1]. According to [14], a hybrid system is a dy-
namical system with both discrete and continuous components. A modern
automobile engine, for example, whose fuel injection (continuous) is regu-
lated by a microprocessor (discrete), is a hybrid system.

A Hybrid Automaton H can be defined as follows:

• A finite set of real variables X = x1, x2, . . . xn. n is the dimension of
H.

• A finite directed graph G = (V,E) with the set of vertices V called
the States, and the set of edges E called the Jumps. Each edge Jump
connects a source State to a target State. It also has a conditional
rule associated to it. If this condition is evaluated as true, then the
automaton internal discrete state will change from the source State to
the target State.

• A set of Flow rules assigned to each State. When a Flow rule is
evaluated it may change the automaton internal continuous state, i.
e., the values of the real variables x1, x2, . . . xn.

The most common example is the temperature control. Figure 10.1
models it. Variable x represents the temperature. In control mode OFF,
the heater is off, and the temperature falls according to the flow condition
x = −0.1x. In control mode ON, the heater is on, and the flow condition is
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x = 5− 0.1x. The initial state is OFF, and the temperature is 20 degrees.
The jump condition is x < 19, in which the heater is turned ON as soon as
the temperature falls below 19 degrees. The invariant condition x >= 18
says that at the latest the heater will go ON then the temperature falls to
18 degrees.

Figure 10.1: Nested cells by neighborhood relationships.

In TerraME an Automaton is defined as in Program 10.1. The automa-
ton ”at” has two possible internal discrete states: ”first” and ”second”.
Each State can have any number of Jump and Flow rules. Automaton,
State, Jump and Flow values have an identifier, i. e., a obligatory property
named ”id” which identifies they univocally inside the whole model. This is
very useful for model verification, debugging, logging and analysis. The first
State defined inside an Automaton is considered its initial state. Jump and
Flow should be defined inside the State they will run. Jump rules always
run before Flow rules. Jump and Flow rules run in the order the have been
defined.

−− Creates a Hybrid Automaton
at = Automaton{

id = ”MyAutomaton” ,

State {
id = ” f i r s t ” ,
Jump{ id = ” j1 ” , . . . } ,
. . . ,
Jump{ id = ”jM” , . . . } ,
Flow{ id = ” f1 ” , . . . } ,
. . . ,
Flow{ id = ”fN” , . . . }

} ,

State {
id = ”second”
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Jump{ id = ” j1 ” , . . . } ,
. . . ,
Jump{ id = ”jQ” , . . . } ,
Flow{ id = ” f1 ” , . . . } ,
. . . ,
Flow{ id = ”fR” , . . . }

}

}

pr in t ( ”Automaton : ” ) ;
p r i n t ( at1 . id . . ” , ” . . at1 : getLatency ( ) ) ;
p r i n t ( at1 : getStateName ( ) ) ;

p r i n t ( ”Running the Automaton . . . ” ) ;
ev = Event{ time = 0 }
at : execute ( ev ) ;

Listing 10.1: Creating Hybrid Automata in TerraME

The output generate by this model is shown commented at the bottom
of Figure 10.1. In TerraME, any Automaton value has a special attribute,
called ”latency”, which registers the passed period of time since the last time
the automaton has change its internal discrete state. Also, any Automaton
is supposed to be located at one CellularSpace where it is possible to know
its current state in each Cell. However, in this example the automaton ”at”
has not been located in any cellular space. Before running, the latency of
an automaton is zero. The string ”Where?” is returned if one try to know
the current automaton internal discrete state.

To run an Automaton one should call its ”execute( Event )” method
which receives an Event value as parameter. Events are rather discussed in
the Chapter 11, by now, should be enough to know that an Event represents
the time instant when something should happens in the model, for instance,
to run an automaton, to save or synchronize a cellular space, and so on. The
obligatory attribute time of an Event is a numeric value that registers this
instant.

In Program 10.1, although the method execute has been called, the
automaton ”at” will not run, because it should be located in a cellular
space before run. In other words, before run an Automaton should be
inserted in an Environment and at least a Trajectory should be defined for
it. For that, one should define all cellular spaces the automaton will be
inside and fill them with dynamically created cells or with cells loaded from
a geographic database. So, these cellular spaces should be inserted inside
an Environment and then, the automaton should be also inserted in this
Environment. An automaton runs in all cellular space previously insert in
the Environment in which it is embedded. The automaton will not run
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in cellular spaces inserted afterwards in the Environment. These steps are
illustrated in Program 10.2. An Environment is a virtual world which local
space properties are modeled by cellular spaces and actors and processes
are represented by automata or agents. Environments are further discussed
in Chapter 12.

The automaton ”at” defined in Program 10.2 will traverse the cellu-
lar space ”cs” according to the trajectory ”it”. The automaton method
”setTrajectoryStatus( Boolean)” can be used turn on or off the trajectories
defined for it. By default the trajectories of an automaton are turned off.
If it is turned on, when executed the automaton automatically will traverse
all trajectories defined inside it. Otherwise, the automaton will not run at
all.

In this example, the automaton real variable ”cont” will be used to
count how many times the automaton jumps among its internal discrete
states inside each cell belonging to the trajectory ”it”. The automaton will
do 10 jumps in the first cell before to go the next. Then, it will do more 10
jumps in the second cell before to go to the next one, and so on.

cs = CellularSpace{ . . . }
cs : load ( ) ;

at = Automaton{

id = ”MyAutomaton” ,

i t = Tra jec tory {
cs ,
function ( c e l l ) r e turn true ; end

} ,

cont = 0 ,

State {
id = ” f i r s t ” ,
Jump{

function ( event , agent , c e l l )
i f ( agent . cont < 10) then

agent . cont = agent . cont + 1 ;
p r i n t ( agent . id . . ” : ” . . agent . cont . . ” −

c e l l [ ” . . c e l l . x . . ” , ” . . c e l l . y . . ” ] ” ) ;
r e turn t rue

end
i f ( agent . cont == 10 ) then agent . cont = 0 end
r e turn f a l s e

end ,
t a r g e t = ”second”

}
} ,
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State {
id = ”second” ,
Jump{

function ( event , agent , c e l l )
i f ( agent . cont < 10) then

agent . cont = agent . cont + 1 ;
p r i n t ( agent . id . . ” : ” . . agent . cont . . ” −

c e l l [ ” . . c e l l . x . . ” , ” . . c e l l . y . . ” ] ” ) ;
r e turn t rue

end
i f ( agent . cont == 10 ) then agent . cont = 0 end
r e turn f a l s e

end ,
t a r g e t = ” f i r s t ”

}
}

}

pr in t ( ”Automaton . . . ” ) ;
env = Environment{ id = ”MyEnvironment” }
env : add ( cs ) ;
env : add ( at ) ;
ev = Event{ time = 0 }
at : s e t Tr a j e c t o ryS ta tu s ( t rue ) ;
at : execute ( ev ) ;

Listing 10.2: A jumping Hybrid Automaton in TerraME.

A Jump rule has two obligatory properties: a conditional function and
the identifier of its target state. The first parameter is a conditional un-
named function ”function( Event, Agent, Cell) → Boolean” which receives
the Event that has triggered the automaton execution as its first param-
eter, the reference to Automaton or Agent who owns the Jump rule been
executed as the second parameter, and the cell where the Jump is been
evaluated as the third parameter. This way, the conditional function can
be defined based on the actual simulation time, on the automaton or agent
states (discrete and continuous), and on local properties of the space where
the rule is embedded. If the conditional function returns ”true” the current
automaton discrete state will transit form the state it is to the state iden-
tified by the jump property ”target”. Otherwise, the automaton discrete
state will remain the same. If an invalid identifier is assigned to the property
”target” of a Jump, the model may crash in runtime.

When an automaton is executed, the Jump rules of its states are always
evaluated before the Flow rules. This fact guarantee that the automaton or
agent will execute its Flow rules only when its internal discrete state reflects
the state of the whole model. Therefore, automata and agent should be
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carefully designed to avoid the model to hang on in runtime. For example,
a Jump could send an automaton to a state where another Jumpsends it
back to its first state.

10.1 Exercises

10.1.1 Exercise 1

Implement and run the model shown in Program 10.2. Describe how it
works.

10.1.2 Exercise 2

Inside each Jump rule there are two statements return. Do two experi-
ments: (a) Change the code doing all the return statements to return ”false”
and run the model; (b) Change the code again and do all return statements
to return ”true”. How the model works? What could be concluded from
these experiments?



Chapter 11

A Hybrid Cellular
Automata based rain
drainage model in
TerraME

In Chapter, we will present two rain drainage models which have been
implemented based on the Cellular Automata Theory [15]-[16]: one discrete
and one continuous.

In both models, the rain is simulated as a Hybrid Automaton, called
”rain” which has two possible states, see Figure 11.1. In the state ”ON”
it is turned on and increments the water stored in the soil by a constant
value RAIN = 2. In the state ”OFF”, the rain automaton is turned off do
nothing. The automaton rains only on top of the mountains, where cells
are higher than 254 meters.
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Figure 11.1: A Hybrid Automaton to simulate the rain.

The Hybrid Automaton ”drainage” is used to simulate the rain drainage
process and considers the vertical drainage of the rain water into the soil,
known as infiltration process and the superficial flow of water from the
higher cells to the lower ones, known as the runoff process. It has two pos-
sible internal discrete states, see Figure 11.2. In the state ”DRY” it stores
the runoff coming from the neighbor cells in the soil and drawn infiltrated
amount of water from the soil. If the cell soil water is greater than the
local soil infiltration capacity, the automaton transit from the ”DRY” state
to the ”WET” state. In this latter state, the automaton calculates the lo-
cal water surplus and sends it to the neighbor cells, causing the superficial
water runoff.

Figure 11.2: A Hybrid Automaton to simulate the drainage of rain water.

Programs 11.1 and 11.2 shows how the ”rain” and ”drainage” automata
shown in Figures 11.1 e 11.1 can be written in TerraME. In this example,
the both processes have been considered as discrete ones.
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r a in = Automaton{

id = ”Rain” ,

i t = Tra jec tory {
csQ ,
function ( c e l l ) r e turn c e l l . a l t i m e t r i a > 254 ; end

} ,

on = true ,

State {
id = ”ON” ,
Jump{

function ( event , agent , c e l l )
r e turn ( not agent . on ) ;

end ,
t a r g e t = ”OFF”

} ,
Flow{

function ( event , agent , c e l l )
c e l l . qtdeAgua = c e l l . past . qtdeAgua + RAIN;

end ,
t a r g e t = ””

}
} ,

State {
id = ”OFF” ,
Jump{

function ( event , agent , c e l l )
r e turn agent . on ;

end ,
t a r g e t = ”ON”

}
}

}

Listing 11.1: An automaton to simulate the rain in TerraME.

To consider the rain and the water drainage as continuous processes, the
flow condition from the rain automaton ”ON” state should be re-written as
in Program 11.3. The flow condition from the drainage automaton ”DRY”
state should also be re-written as in Program 11.4.

dra inage = Automaton{
id = ”Drainage” ,

i t = Tra jec tory {
csQ ,
function ( c e l l ) r e turn true ; end

} ,
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State {
id = ”DRY” ,

Jump{
function ( event , agent , c e l l )

r e turn ( c e l l . qtdeAgua > c e l l . capIn f ) ;
end ,
t a r g e t = ”WET”

} ,

Flow{
function ( event , agent , c e l l )

c e l l . qtdeAgua = c e l l . past . qtdeAgua + ( c e l l . past . r u n o f f
− KInf∗ c e l l . past . qtdeAgua ) ;

c e l l . r u n o f f = 0 ;
end

}
} ,

State {
id = ”WET” ,
Jump{

function ( event , agent , c e l l )
r e turn ( c e l l . qtdeAgua <= c e l l . capIn f ) ;

end ,
t a r g e t = ”DRY”

} ,
Flow{

function ( event , agent , c e l l )

c e l l . su rp lu s = c e l l . past . qtdeAgua − c e l l . capIn f ;
i f ( c e l l . su rp lu s < 0) then c e l l . su rp lu s = 0 ; end

−− PROCESS: send s u p e r f i c i a l f l ow to the lower
−− neighbor c e l l s
i f ( c e l l . lowerNeigh > 0 ) then

l o c a l r u n o f f = c e l l . su rp lu s / c e l l . lowerNeigh ;
ForEachNeighbor (

c e l l ,
function ( c e l l , ne igh )

i f ( c e l l . a l t i m e t r i a >
neigh . a l t i m e t r i a ) then

neigh . r u n o f f =
neigh . r u n o f f + r u n o f f ;

end
r e turn true ;

end
) ;
c e l l . su rp lu s = 0 ;
c e l l . qtdeAgua = c e l l . capIn f ;

end
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end
}

}
}

Listing 11.2: An automaton to simulate the drainage of rain water in
TerraME.

State {
id = ”ON” ,
. . .
Flow{

function ( event , agent , c e l l )
c e l l . qtdeAgua = d{ function ( t , q ) re turn RAIN; end ,

c e l l . past . qtdeAgua , 0 , 1}
end

}
}

Listing 11.3: A continuous flow rule to simulate the rain in TerraME.

State {
id = ”DRY” ,
. . .
Flow{

function ( event , agent , c e l l )
c e l l . qtdeAgua = d{ function ( t , q ) re turn c e l l . past . r u n o f f

− KInf∗q ;
end , c e l l . past . qtdeAgua , 0 ,1 , 0 .0001 }

c e l l . r u n o f f = 0 ;
end

}
}

Listing 11.4: A continuous flow to simulate the drainage of rain water in
TerraME.

The steps shown in Program 11.5 should be taken in order to execute
the whole drain drainage model. First the cellular space ”csQ” has been
defined and loaded. So, both automata are defined. The environment ”env”
has been defined and the cellular space ”cs” and the automata ”rain” and
”drainage” have been inserted in it. The automata trajectories have been
turned on. Finally, the dynamic model has been executed. The ”rain”
automaton runs, the space is synchronized, then the ”drainage” automaton
runs and the space is synchronized again. The synchronization between
the automata is used to mean that the processes are sequential in time.
Without this synchronization step, the automata run over the same past
value of the cellular space. The changes caused by the ”rain” automaton in
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the present value of the cellular space attributes would not be perceived by
the ”drainage” automaton, meaning theses processes are parallel in time.

csQ = CellularSpace{ . . . }
csQ : load ( ) ;

r a in = Automaton{ . . . }
dra inage = Automaton{ . . . }

env = Environment{ id = ”MyEnvironment” }
env : add ( csQ ) ;
env : add ( ra in ) ;
env : add ( dra inage ) ;
r a in : s e t Tr a j e c t o ry S t a tu s ( t rue ) ;
dra inage : s e tT ra j e c t o r yS ta tu s ( t rue ) ;

for t = 1 , FINAL TIME, 1 do
ev = Event{ time = t }
r a in : execute ( ev ) ;
csQ : synchronize ( ) ;
dra inage : execute ( ev ) ;
csQ : synchronize ( ) ;

end

Listing 11.5: The Cellular Automata base rain drainage model overall
structure.

11.1 Exercises

11.1.1 Exercise 1

Using the ”cabecaDeBoi.mdb” geographical database and the codes from
Program 11.1, 11.2 and 11.5 implement the whole model described in Chap-
ter 11. Run the model from the instant 1 to the instant 20. Use the Ter-
raView application to explore the model results. Explain the outcomes.

11.1.2 Exercise 2

Using the ”cabecaDeBoi.mdb” geographical database and the codes from
Program 11.1, 11.2 and 11.5 implement the whole model described in Chap-
ter 11. Replace the Flow rules for the ones shown in Figures 11.3 and 11.4.
Run the model from the instant 1 to the instant 20. Use the TerraView
application to explore the model results. Explain the outcomes. Compare
its results with the results observed in the exercise above.
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11.1.3 Exercise 3

Using the ”cabecaDeBoi.mdb” geographical database and the codes from
Program 11.1, 11.2 and 11.5 implement the whole model described in Chap-
ter 11. Run the model from the instant 1 to the instant 20 using different
trajectories for the ”rain” automaton. Use the TerraView application to
explore the model results. Explain the outcomes.
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Chapter 12

Timers, Events and
Messages

Until now we have been working with discrete simulation. Only one
temporal resolution (∆t = 1) has been considered. The time has not been
explicitly represented in the model rules. Therefore for the model outcomes
what matters is how many times the simulation loop has been execute. The
same model output is produced if the simulation runs from time 0 to time
100 or from time 100 to time 200. However TerraME provides three tempo-
ral models for building dynamic models which take in consideration several
process that act in different periodicity changing the space properties. These
temporal models are:Timer, Event and Message.

A Timer is a scheduler which maintains a queue of pairs (Event, Mes-
sage) to control the simulation clock. The pairs are ordered by the Event
time attribute. An Event represents a time instant when the simulation
engine must execute some computation for the modeler, called Message. A
Message is a modeler defined function from where, in general, simulation
engine services are invoked. Among these services, there are services to load
data from the database, to save data in the database, to execute a specific
automaton, to synchronize a cellular space, etc.

In TerraME, a Timer is a container for pairs (Event, Message), Pro-
gram 12.1. Any finite number of pairs (Event, Message) can be added to
a Timer. Pairs (Event, Message) are inserted in Timer in the same order
they have been defined. However, inside the Timer they will be re-ordered
in a chronological sequence.

time = Timer{
Pair {
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Event{ . . . } ,
Message{ . . . }

} ,
Pair {

Event{ . . . } ,
Message{ . . . }

} ,
. . .
Pair {

Event{ . . . } ,
Message{ . . . }

}
}

Listing 12.1: The general structure of a Timer in TerraME.

An Event is defined by two mandatory properties (time and period)
and an optional one (priority). The time property defines the next instant
of time (in the simulation clock) when the event must occur. The period
property defines the periodicity in which the event must occur. The priority
property is used to decide what event must occur first when two events have
the same value for the time property. The default priority value is 0 (zero).
Smaller values have higher priority. Program 12.2 presents an Event that
must occur at the year 1985, repeat every year, and has priority equal to
-1.

Event{ time = 1985 , per iod = 1 , p r i o r i t y = −1 }

Listing 12.2: Defining an Event in TerraME Modeling Language.

A Message is a user defined function whose parameter is the Event that
has caused its execution. Program 12.3 shows a Message that prints the
simulation time in the screen, executes the automaton ”rain”, and prints
the word ”Rained” in the screen.

Message{
function ( event )

p r i n t ( event : getTime ( ) ) ;
r a in : execute ( event ) ;
p r i n t (”Rained” ) ;
r e turn f a l s e ;

end
}

Listing 12.3: Defining a Message in TerraME.

When a Timer is executed, it keeps running until there are no pairs
(Event, Message) inside it. At each simulation step, a Timer pops the pair
on the top of its internal queue, updates its internal clock to the instant
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time registered in pair Event and, then, executes the pair Message. The
”Message(Event) → Boolean” function always returns a Boolean value. If
the returned value is true, the Event.time property will be calculated as
Event.time = Event.time + Event.period and the pair (Event, Message)
will be re-inserted in Timer queue. This way, the Event will happen again
in the simulation future and the Message will be execute once more. If the
returned pair is false, the pair (Event, Message) will discarded. The default
return value is true. Program 12.4 shows an example of Timer which runs
from the time 0 to the time 10 and prints the sequence 0, 0.5, 1, 1.5, 2,
. . . , 8.5, 9, 9.5, 10 on the screen. If one changes the Message function to
return false, the Timer will run just once and print only the number 0 on
the screen.

c l o ck = Timer{
Pair {

Event{ time = 0 , per iod = 0 .5 } ,
Message{ function ( event ) p r i n t ( event : getTime ( ) ) end }

}
}
c l o ck : execute (10) ;

Listing 12.4: An example of a Timer with one internal pair (Event,
Message).

When executed, the code shown in Program 12.5 prints the numeric
sequence 0, 1, 2, 3, 3, 3.5, 4, 4, 4.5, 5, 5, 5.5, 6, 6, 6.5, 7, 7, 7.5, 8, 8, 8.5, 9,
9, 9.5, 10 on the screen. In the instants 0, 1 and 2 just the message from the
first pair runs. From the instant 3 to 9 the first message runs once and the
second message runs twice. In the instant 10, just the first message runs
and the simulation finishes.

c l o ck = Timer{
Pair {

Event{ time = 0 , per iod = 1 } ,
Message{ function ( event ) p r i n t ( event : getTime ( ) ) end }

} ,
Pair {

Event{ time = 3 , per iod = 0 .5 } ,
Message{ function ( event ) p r i n t ( event : getTime ( ) ) end }

}
}
c l o ck : execute (10) ;

Listing 12.5: An example of a Timer with two pairs (Event, Message).
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12.1 Exercises

12.1.1 Exercise 1

Implement the model shown in Program 12.4. Run the model for several
event periodicities. How the model works?

12.1.2 Exercise 2

Implement the model shown in Program 12.5. Run the model. Assign
the value 1 to the ”period” attribute of the second event. Run the model
again. How the model works? What can be concluded?

12.1.3 Exercise 3

Implement the model shown in Program 7.3. Change the Message code
of the second pair so that it returns ”false”. Run the model. How the model
works?
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29. Modelagem matemática em finanças quantitativas em tempo discreto

Max Oliveira de Souza e Jorge Zubelli

30. Programação não linear em dois ńıveis: aplicação em Engenharia
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