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Preface: A Short Survey of Length 
Scales  

Our Genome
2 m long

Adam & Eve
1.83 and 1.68 m 

tall

Kodiak 
Bear 3 m 

tall

African Elephant
4 m tall

Giraffe
6.1 m tall



Preface: A Short Survey of Length 
Scales  

Metaphase
X Chromosome

7 x 10-6 m
Photoreceptors

1 x 10-4 m
Sperm

6 x 10-5 m

Cell Nucleus 
6 x 10-6 m

Yeast
3 x 10-6 m



Chromatin Must Be Accessible For Transcription

Very little accessible tape! Knots don’t help reading!

DNA must be open and knots free



A Very Long Polymer



A Polymer In A Complex Environment



A Complex Polymer In A Complex Environment



Nucleosome 

More Than A Polymer: Epigenetics

H4H3

H2BH2A



Nucleosome 

H4H3

H2BH2A

K9me3
K9ac
K4me2
etc…

H3K4me1

ChIP-Seq

More Than A Polymer: Epigenetics



Chromatin Architecture Regulates Genes Expression 

Enhancers

© Nature Education

Transcription Factories

Rieder et al. 2012



Probing Nuclear Architecture 

Fluorescence In Situ 
Hybridization (FISH)

Chromosome 
Conformation Capture
(3C, 4C, 5C, Hi-C)

Image from Wikipedia
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1665–1680, December 18, 2014 ª2014 Elsevier Inc. 1667

Structural Information: Hi-C

1 2 3 4 5 6
Rao et al. 2014



Chromatin Architecture is Specific to 
the Cell Type

A E

F

B

C

D

Figure 2. The Genome Is Partitioned into Contact Domains that Segregate into Nuclear Subcompartments Corresponding to Different
Patterns of Histone Modifications
(A) We annotate thousands of domains across the genome (left, black highlight). To do so, we define an arrowhead matrix A (right) such that Ai,i+d = (M*i,i-d –

M*i,i+d)/(M*i,i-d + M*i,i+d), where M* is the normalized contact matrix. This transformation replaces domains with an arrowhead-shaped motif pointing toward the

domain’s upper-left corner (example in yellow); we identify these arrowheads using dynamic programming. See Experimental Procedures.

(B) Pearson correlation matrices of the histone mark signal between pairs of loci inside and within 100 kb of a domain. Left: H3K36me3; Right: H3K27me3.

(C) Conserved contact domains on chromosome 3 in GM12878 (left) and IMR90 (right). In GM12878, the highlighted domain (gray) is enriched for H3K27me3 and

depleted for H3K36me3. In IMR90, the situation is reversed. Marks at flanking domains are the same in both: the domain to the left is enriched for H3K36me3 and

the domain to the right is enriched for H3K27me3. The flanking domains have long-range contact patterns that differ from one another and are preserved in both

(legend continued on next page)

1668 Cell 159, 1665–1680, December 18, 2014 ª2014 Elsevier Inc.

Lieberman Aiden Lab



Patterns in contact probabilities identify 6 
chromatin types (Sub-compartments):
A1, A2, B1, B2, B3, B4

DNA-DNA Ligation Experiments Reveals Compartments
which appear to correlate with epigenetic modifications

Rao & Huntley et al, Cell (2014)



Schematic Illustration of Computational Pipeline

Di Pierro, Cheng, et al PNAS 2017



Structural EnsembleDNA-DNA ligation Assays: 
Hi-C



Hi-C Interpretation

fij = f rij( )

i

1 Chromosome, 1 Conformation, 1 Experiment

Did i and j crosslink?
• yes/no

How often did i and j crosslink?
• A lot when they are close, not 

much when they are far.

j

 4 

In a chromosome conformation capture experiment (Hi-C in the case of the experimental 
data used in this manuscript) the number of crosslinking event is counted over a set of many 
cells. The sampling of the crosslinking probability is therefore averaged over a set of different 
chromosome conformations to produce the measured probabilities: 

 

 
 

pij = f rij( ) =
f rij( )e−βU !r( ) d!r∫
e−βU

!r( ) d!r∫
 

 
 
where we have used the canonical ensemble and where  

!r is the vector characterizing the 
positions in Cartesian space of all the loci in the chromosome,  U

!r( )  is the potential energy of 
the system and β = 1/KBT . 

We now chose a set of constraints that will lead us to the MiChroM information theoretic 
energy function. We make three physical assumptions about of the process of chromatin folding. 
First, chromatin can be classified into a few different chromatin types; each chromatin type 
possesses specific interaction patterns with the other types and is characterized by specific 
biochemical properties. In our model we will assume that when two segments of chromatin come 
into contact, the effective free energy change due to this contact depends exclusively on the 
chromatin type identity of each segment. Second, loop formation happens between specific loci 
and it is related to the activity of the protein CTCF; every time the pair of loci constituting the 
two ends of a loop comes into contact, there is a specific gain in the effective free energy. The 
third assumption is relative to the ideal chromosome model: every time a pair of loci comes into 
contact there is a gain/loss of γ d( )  effective free energy that depends only on the genomic 
distance d .  

These three physical assumptions are related to three phase-space observables define using 
the probability of cross-linking. We then constrain the expectation value of these observables to 
their experimentally determined values extracted from the contact probabilities measured 
through chromosome conformation capture. In this way we introduce three classes of constraints 
that recapitulate the assumptions made about of the process of chromatin folding. 

For a given configuration  
!r of the chromosome, the average number of crosslinking events 

happening between two chromatin types k and l is: 
 

 

Tkl
!r( ) = f rij( )

i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑  

 
The expectation value of Τkl is a proxy for the energy of the contact of type kl . The number 

of crosslinking events of type kl  is proportional to the total number of contacts of such kind; the 
average number of contacts is in turn proportional to the energy of that kind of contact. For this 
reason constraining Τkl to its experimental value is similar to constraining the effective contact 
energy to the correct value. 

Similarly, the total number of crosslinking events happening between loci that are known to 
form a loop is: 

 



Fact 1. Phase Separation of Chromatin Structural 
Types 

If and when two segments of chromatin form a 
contact the energy of the contact depends only on the 
type identity of the contact.

The Minimal Chromatin Model (MiChroM): 
Phase Separation



The Minimal Chromatin Model: 
Some Motivated Physical Assumptions

Type-to-Type Interactions are mediated by a cloud of 
proteins that bind with different selectivity to different 
sections of chromatin

Implicit Protein Model



Fact #2: 
Chromatin form loops at specific locations 
related to the activity of the protein CTCF

Phillips and Corces 2009
Rao et al. 2014

Physical Assumption #2: 
If and when the two ends of a loop 
come into contact, an there is an 
additional gain in effective free energy  

The Minimal Chromatin Model: 
Some Motivated Physical Assumptions

Observable Constraint

 
L !r( ) = f rij( )

i, j( )∈ Loops Sites{ }
∑  

cL = L !r( )∫ πMiChroM !r( )d!r − Lexp



Ideal Chromosome/Lengthwise Compaction.
Every time two loci at genomic distance come 
into contact there is a gain/loss of             
effective free energy.

d

γ d( )

The Minimal Chromatin Model (MiChroM): 
Ideal Chromosome

A translational invariant function of the genomic 
distance consistent with

o the notion of a higher order fiber in chromatin
o liquid crystal behavior

But more general…

Fact #3: The effect of all protein motors acting along the DNA polymer

d

M.D.P. , B. Zhang, E. Lieberman Aiden, P. G. Wolynes, and J. N. Onuchic, PNAS 2016
B. Zhang and P. G. Wolynes, PNAS 2015 



The Ideal Chromosome 

Zhang and Wolynes 2015

there are actually two layers of fibrils in the ideal chromosome.
The first layer has a periodicity of ∼0.25 Mb, and the second
layer has a periodicity corresponding to around 5 Mb. The two
layers of fibrils can also be seen from the density map shown in
Fig. S6D, with the genomic and spatial distances forming the two
axes, respectively. Fig. 4C further shows that the 0.25-Mb peak
corresponds to a 300-nm fibril and the 5-Mb peak corresponds to
a 600-nm fibril superstructure. We note that the hierarchical layers
of fibril structures are reminiscent of the liquid crystal-like confor-
mations that have been observed for dinoflagellate chromosomes
(44) and are consistent with the hierarchical metaphase chromo-
some model supported by light microscopy experiments (42).
As shown by the correlation functions and their power spectra

in Fig. 4 A, B, and D, signatures of fibril structure also actually
appear in the optimized interphase chromosome having heteroge-
neous interactions (red lines), although they are much weaker. The
fibril structures are more evident at the low information theoretic
temperature T = 0.2  as shown as blue lines, although the hetero-
geneity by itself leads to broadening of the peak around 0.25 Mb.
For human interphase chromosomes, signals of local fibril-like
structures have indeed been picked up in light microscopy experi-
ments and these have led to specific suggestions of a hierarchical
fiber of fibers model for chromosomes (42). The scattering intensity
profile computed from the present landscape shown in Fig. S6E
indicates that these fibril features would be hard to detect in small-
angle X-ray scattering experiments of the type whose results have
been used to argue against such models (45).

Folding Free-Energy Profiles of Topologically Associating Domains.
It has been suggested that the topologically associating domains,
within which long-range contacts between DNA sequences are
formed, provide structural units that could be a dynamical basis
for coordinating gene regulation (46). For example, folding of to-
pologically associating domains can bring enhancers and promoters
that are separated by large genomic distances close to each other.
Such a correlation between structure and function argues for the
importance of specific interactions in guiding the 3D organization
of topologically associating domains, and thus justifies the use of
landscape theory to study chromosome folding. The present model,
in addition to allowing an examination of global chromosome dy-
namics, allows us to explore the energy landscape of individual
domains and their coupling to neighboring ones while still re-
maining agnostic regarding detailed biochemical and biophysical
mechanisms that actually give rise to the effective landscape.
We first search for generic structural features of the set of

topologically associating domains identified in the mature cell
chromosome 12. To measure the structure similarity within each of

these collapsed globules, we again determine the pairwise Q in the
ensemble of each defined topologically associating domain at
T = 1.0. As shown in Fig. S6G, most of the topologically associating
domains have an average hQi around 0.5. These high hQi values
indicate that topologically associating domains exhibit strong
structural regularity, which is consistent with the orientational
ordering characterized in Fig. 4. The liquid crystal-like orienta-
tional ordering shown in Fig. 4 would indeed even be predicted for
collapsed globules of locally ordered chain with excluded volume,
just as it is for proteins (47).
Landscapes can be found for all of the local domains and various

behaviors are found as described in SI Text. To highlight what can
be learned, we discuss the analysis of the thermodynamics of one
particular topologically associating domain between genomic re-
gion 40.76–42.6 Mb, as highlighted with a star in Fig. S6G. Similar
analyses for other regions are provided in the Figs. S7 and S8. Here
we study the free-energy profile over the reaction coordinate Q
relative to a reference structure shown in Fig. 5, Inset. The free
energy FðQÞ, which is shown in Fig. 5 in blue, exhibits two basins
around Q= 0.4 and Q= 0.8 respectively. The average energy EðQÞ,
however, decreases to a minimum at the rather high value of
Q= 0.8. The double-well feature of the free-energy profile in-
dicates a possible cooperative transition between the two ensem-
bles of conformations and supports the idea that topologically
associating domains may undergo two state transitions as in recent
models of stochastic gene regulation (48–50). We also can in-
vestigate the coupled landscapes for neighboring topologically
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670 nm
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412 nm
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B

Fig. 4. Chromosome structures at low information
theoretic temperature. (A and B) The orientational
order parameter along the genome (A) and its Fou-
rier transform (B) for the mature cell chromosome at
temperature T = 1.0 (red) corresponding to the ex-
perimental data and at the lower information theo-
retic temperature T = 0.2 (blue) as well as for the
ideal homogenized chromosome model (IC). (C and D)
Example conformations of the ideal (C) and the ma-
ture cell (D) chromosome at T = 0.2.

Fig. 5. Landscape characterizations for a topologically associating domain
between genomic region 40.76–42.6 Mb. Average energy E (red) and free
energy F (blue) at T = 1.0 as a function of Q. (Inset) The reference structure
used for the calculation of Q.

6066 | www.pnas.org/cgi/doi/10.1073/pnas.1506257112 Zhang and Wolynes

• A translational invariant function 
of the genomic distance

• Consistent with

o the notion of a higher order 
fiber in chromatin

o liquid crystal behavior

But more general…



Bin Zhang

COMMENTARY

Three-dimensional chromosome structures from
energy landscape
Gamze Gürsoya and Jie Lianga,1

The human genome contains about 2-m length of
DNA and is packed into a small cell nucleus of
approximately cubic-micrometer size. A central
question in genome biology is to understand how
chromatins are organized in such a compact vol-
ume, while biological functions such as gene ex-
pression, DNA replication, and DNA repair are
robustly orchestrated. Over the past two decades,
experimental studies based on chromatin fragmen-
tation and proximity cross-linking have given us
quantitative information on the frequencies of
long-range interactions among genomic elements
(1). With recent development of the Hi-C method-
ology (2), frequencies of such interactions are now
known at 1-kB resolution (3). These studies lead to
discoveries of finer organizational structures of
compartments, subcompartments, and topologi-
cally associated domains (TADs) (3, 4). Although these
structures have been inferred from analysis of heat
maps of frequencies of genomic interactions (3, 5,
6), a grand challenge in studying the 3D genome is
to gain mechanistic understanding of the general prin-
ciples governing chromatin folding and their spatial
organization. In PNAS, Di Pierro et al. (7) introduce
an energy landscape theory and a predictive model
of chromosome architecture.

Di Pierro et al. start by considering the roles of
specific biochemical interactions. Although generic
polymer models of chromatin have generated im-
portant insight into the overall behavior of chroma-
tin, growing evidence suggests that biochemical
interactions are critical for 3D genome organization
(8). Di Pierro et al. assume that chromosomes fold
under the influence of a cloud of proteins, which bind
to different sections of chromatin with different affin-
ities and specificities. To recapture the energy land-
scape governed by these interactions, Di Pierro et al.
develop the minimal chromatin model.

The first ingredient of Di Pierro et al.’s model is
the partitioning of the genome into intervals of a
handful of types. Each interval type is character-
ized by its histone modifications and a characteristic
combination of nuclear proteins it interacts with. As

demonstrated by a number of biochemical and struc-
tural studies on Drosophila and human genome, dis-
tinct chromatin subcompartments corresponding to
different interval types can be clearly identified, with
exhibitions of characteristic histone marks and pat-
terns of long-range interactions (3, 9). Di Pierro et al.
model the effects of binding between two chromatin
segments by approximating the free energy changes
as a value that depends only on the types of the two
contacting intervals. A similar approach has been
successfully applied to study the formation of TADs
(10). The second ingredient of Di Pierro et al. is that
loops have high propensities to form between pairs
of anchor loci, and the effects of loop formation can
be modeled by changes in effective free energy in-
curred at the pair of loci where loops form. Di Pierro
et al. assume that the anchor loci are mostly associ-
ated with CCCTC factors (CTCF) binding motifs. The
important role of CTCF in loop formation has been

Fig. 1. Energy landscapes of protein and chromosome
folding. (A) A protein sequence of amino acid residues
and disulfide bonds between cysteine residues dictates
the energy landscape of protein folding, which
describes interactions between residues and solvent.
The structure of the protein can be predicted from this
energy landscape. (B) A sequence of genomic interval
types and looping interactions between anchor loci of
CTCF motifs dictates the energy landscape of
chromosome folding, which describes interactions
between genomic intervals and nuclear proteins. The
structural ensemble of chromosome can be predicted
from this energy landscape.

aRichard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
Author contributions: G.G. and J.L. wrote the paper.
The authors declare no conflict of interest.
See companion article on page 12168.
1To whom correspondence should be addressed. Email: jliang@uic.edu.

www.pnas.org/cgi/doi/10.1073/pnas.1614535113 PNAS | October 25, 2016 | vol. 113 | no. 43 | 11991–11993
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M.D.P. , B. Zhang, E. Lieberman Aiden, P. G. Wolynes, and J. N. Onuchic, PNAS 2016 
+ Commentary by G. Gürsoy and J. Liang, PNAS 2016

with

The Minimal Chromatin Model (MiChroM): 
Phase Separation

A one-dimensional sequence encodes the three-dimensional fold of 
chromosomes



The Minimal Chromatin Model: 
3 Simple Physical Assumptions

If and when two segments of chromatin 
form a contact the energy of the contact 
depends only on the type identity of the 
contact.

 

Tkl
!r( ) = f rij( )

i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑  
cklT = Tkl

!r( )∫ πMiChroM !r( )d!r −Tklexp        

Observable Constraint

If and when the two anchors of a 
CTCF-mediated loop come into contact, 
there is an additional gain in effective free 
energy        

#1 

#2 

#3 

Physical Assumption 

 
L !r( ) = f rij( )

i, j( )∈ Loops Sites{ }
∑  

cL = L !r( )∫ πMiChroM !r( )d!r − Lexp

Ideal Chromosome/Local Compaction.
Every time two loci at genomic distance d  
come into contact there is a gain/loss 
of             effective free energy.γ d( )

 
Gd
!r( ) = f ri,i+d( )

i
∑  

cdG = Gd
!r( )∫ πMiChroM !r( )d!r −Gd

exp        

Phillips and Corces, 2009, Rao et al., 2014

Rao et al., 2014, Fillion et al., 2010



Constraints

Maximum Entropy Principle

Information Theoretic Energy Function

Polymer
Potential

Type-to-Type 
Interactions

Specific 
Interactions

Lengthwise
Compaction

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + χ ⋅ f rij( )
 i, j( )∈ Loop Sites{ }

∑ + γ d( ) f ri,i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑

M.D.P. , B. Zhang, E. Lieberman Aiden, P. G. Wolynes, and J. N. Onuchic, PNAS 2016 
+ Commentary by G. Gürsoy and J. Liang, PNAS 2016

The Minimal Chromatin Model (MiChroM): 
the Effective Energy Function



The Minimal Chromatin Model: 
Maximum Entropy Principle

Constraints

Maximum Entropy Principle

Information Theoretic Energy Function

To Be 
Determined…

 

UMiChroM
!r( ) =UHP

!r( ) + α kl f rij( )
i∈ Loci of Type k{ }
j∈ Loci of Type  l{ }

∑ + χ ⋅ f rij( )
 i, j( )∈ Loop Sites{ }

∑ + γ d( ) f ri,i+d( )
i
∑

d=3

500

∑
k≥l

k ,l  ∈ Types

∑



The Minimal Chromatin Model: 
Calibration

Human Chromosome 10 B-lymphoblastoid cells (GM12878)  

α kl  , γ d( )  , χ( )Iterate



The Minimal Chromatin Model: 
Quality Check

Human Chromosome 10 B-lymphoblastoid cells (GM12878)  

Pearson’s Correlation 0.95 Slope 0.94
Intercept 0.0003



BA

C

D

The Minimal Chromatin Model: 
Predictivity

Chromosome  22  (GM12878)  



The Minimal Chromatin Model: 
Quality Check

Human Chromosome 10 B-lymphoblastoid cells (GM12878)  



The Minimal Chromatin Model: 
Quality Check

Human Chromosome 10 B-lymphoblastoid cells (GM12878)  



A physical polymer model with discrete chromatin 
types captures compartmentalization

Minimal Chromatin Model 
(MiChroM)

Polymer
Potential

Type-Type Interactions

Ideal Chromosome

Chromatin 
Structural 

Types

50kb 
resolution

UMiChroM r( ) = kl f rij( )
i Loci of Type k{ }
j Loci of Type  l{ }

+
 k l

,l   Types

UHP r( ) +
k

+ d( ) f ri,i+d( )
id=3

500

Di Pierro, Zhang, Lieberman Aiden, Wolynes, Onuchic, PNAS 2016

f (rij )

rij

i

j

A1, A2, B1, B2, B3, B4



Schematic Illustration of Computational Pipeline

Di Pierro, Cheng, et al PNAS 2017



Where Is the Blueprint?
From Epigenetics To Chromatin Types (MEGABASE)

with

Epigenetic Markers

Chromatin Types

Structures ✔ MiChroM

Machine Learning (MEGABASE)

M.D.P. , R.R. Cheng, E. Lieberman Aiden, P. G. Wolynes, and J. N. Onuchic, PNAS 2017 Ryan R. Cheng



De Novo Structure Prediction of Human Chromosomes

MEGABASE

Chromatin

50kb 
resolution

locus l

(l) = Type(l),Exp1(l),Exp2 (l),...,ExpL l)( )
Signal for each ChIP-seq 

experiment at locus l
Chromatin 

Type at locus l

P( ) = 1
Z exp Jij (

i< j
i , j ) hi ( i )

i

P(Type | Exp1(l), Exp2 (l),... ExpL (l))Di Pierro et al, PNAS 2017



VKSKRIQLGLNQAELAQKKVGTTQQSIEQLENGKT-KRPRFLPELASALGVSVDWL
IKSAMKEQDMSLSELARRVGVAKSAVSRYLNLTREFPLNRTEDFAKALSISTEYL
IKKLLKERALSMRQLGILTNIDPATVSRIINGKQPPKQKHLQKFAECLQVPPQLL

RPC1_BP434
H3Z4N6_STAEP
C2X6S5_BACCE

Strong statistical 
couplings between 
coevolving residues 
that are in contact

Statistical couplings 
between distal residues 
generally weak

Amino acid coevolution in proteins

Since 1998



P (A1, . . . , AL) =
1

Z
exp{

X

i<j

eij(Ai, Aj) +
X

i

hi(Ai)}

Using maximum entropy principle
to model the joint probability distribution

Input Data :

Pi(Ai) =
X

{Ak|k �=i}

P (A1, ..., AL) ⌘ fi(Ai)Pi(Ai) =
X

{Ak|k �=i}

P (A1, ..., AL) ⌘ fi(Ai)

Pij(Ai, Aj) =
X

{Ak|k �=i,j}

P (A1, ..., AL) ⌘ fij(Ai, Aj)Pij(Ai, Aj) =
X

{Ak|k �=i,j}

P (A1, ..., AL) ⌘ fij(Ai, Aj)

AAKAPSARGHATKPRAPKDAQHEAA
AAKAPSARGHATKPRAPKDAQHEAA
SAKEKNEKMKIVKN-LIDKGKKSGS
TELETKFTLDQVKDQLEEQGKKRSS
LAPSGNTALATAKKKEITDRTDDPV
TELETKFTLDQVKPRAEKDGKKRSS

i = 6 j = 17

f6,17(S6,P17) = 2/6

eij(A,B) ⇡ �(C�1)ij(A,B)

Cij(A,B) = fij(A,B)� fi(A)fj(B)

Faruck Morcos Martin Weight



Direct Information Metric

P (dir)
ij (A,B) =

1

Z
exp{eij(A,B) + ĥi(A) + ĥi(B)}

Direct Probabilities are defined as:

The probabilities for residue couplets are 
ranked using Direct Information

Pfam family
Alignment

DCA
Select top 
couplets 
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Top 20
contacts
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TP rate 

True Positive 
(TP) rates 

N
um

. o
f S
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s

|i-j| > 4 
True positive contacts (<8A) are 

evaluated from top couplets

DIij =
qX

A,B=1

P (dir)
ij (A,B) ln

P (dir)
ij (A,B)

fi(A) fj(B)



A Statistical Model for ChIP-Seq Data

 
!σ (l) = Type(l),Exp1(l),Exp2(l),...,ExpL (l)( )

l −1
l

l +1  
P(
!σ ) = 1

Z
exp −H (

!σ )( )

 
H
!σ( ) = − Jij (

i< j
∑ σ i ,σ j )− hi (σ i )

i
∑

Training set: odd-numbered chromosomes
Test set: even-numbered chromosomes
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Figure S1 
 
(A) For two representative regions of chromosome 2, we compare the sequence of chromatin 
types obtained from MEGABASE and the Hi-C compartment annotations. As illustrated by the 
region highlighted in gray on the left, MEGABASE captures the sharp changes in epigenetic 
markings sometimes present at the boundaries of contiguous regions of chromatin types (left 
boundary) while also correctly predicting less obvious transitions from one chromatin type to 
another (right boundary). On the right, the highlighted region shows how MEGABASE can 
resolve very small (50-100 kb) segments of a specific chromatin types.   
 
(B and C) As shown by the confusion matrix3 in figure annotations from MEGABASE largely 
overlap the compartments annotations from Hi-C reported in ref. (2). While we expect most 
                                                             
3 For each of Hi-C compartment annotations, rows show how likely MEGABASE classifies it as 
each one of the 5 types. 
 

67.3Mb 85.2Mb
MEGABASE

Hi-C 
H3K36me3
H3K27me3
H3K27ac
H3K79me2
H3K4me1
H3K4me2
H4K20me1

13.2Mb 56.05Mb

Chromosome 2
0 243.25Mb

A2
B1
B2
B3

A1

A

B
0.728 0.175 0.094 0.000 0.003 

0.173 0.718 0.067 0.002 0.041 

0.093 0.115 0.614 0.052 0.127 

0.005 0.044 0.105 0.196 0.650 

0.003 0.091 0.061 0.015 0.831 

A1 A2 B1 B2 B3 
MEGABASE Annotation

A1 

A2 

B1 

B2 

B3 

Hi
-C

 A
nn

ot
at

io
n

C

A 

B 

A B 
0.897 0.103 

0.117 0.883 

MEGABASE Annotation
Hi

-C
 A

nn
ot

at
io

n

A Predictor for Chromatin Structural Types



De Novo Structure Prediction of Human Chromosomes

Di Pierro, Cheng, et al PNAS 2017



Comparison of simulated structures with DNA-DNA Ligation 
Experiments

Di Pierro, Cheng, et al PNAS 2017



3D ensemble of 
Chromosomal 

Structures

Open-MiChroM

Nucleic Acids Research, 2020 3

Figure 1. The NDB focuses on genomic 3D structural ensembles. All experiments probing genome architecture can ultimately be reconnected to these
ensembles. Because of this, 3D ensembles provide a uni!ed framework for the interpretation of all types of experimental observation and constitute the
central link connecting experiments that would otherwise be dif!cult to compare. The NDB is a repository of web-based computational tools enabling
predictive physical modeling of the 3D architecture of genomes, analysis and visualization of the chromosomal structures. The 3D structures of chromo-
somes and their motions are predicted using the MEGABASE + MiChroM pipeline through MD simulations; these simulations are typically carried on
using HPC resources. Experimental data are used both as input and validation datasets to the MEGABASE + MiChroM pipeline, which is outlined in
Figure 2. The physical simulations achieve speci!city using as input information about the epigenetic marking patterns of speci!c chromosomes in speci!c
cells. The chromosomal structural ensembles resulting from simulations can then be used to generate in silico Hi-C maps, as well as in silico displacement
correlation spectroscopy and FISH. Additionally, the NDB freely host genomic structural ensembles of both computational origin, as the ones from the
MEGABASE +MiChroM or similar pipeline, or experimental origin, as the structures obtained from super-resolution microscopy. The 3D structure data
are available in the newly de!ned .ndb !le format. The 3D visualization of chromosome structures from simulations is also available in the NDB server.
In the NDB visualization scheme, 1D experimental signal from NIH-ENCODE can be overlaid onto chromosome 3D structures to study their spatial
features.

cell line and the chromosome of interest have been selected,
the user can choose a 1D experimental track which can be
superimposed on the 3D structure of the very same chromo-
some. For the !rst time, through the NDB, it is now possi-
ble to analyze and visualize the cell-speci!c 3D spatial con-
formation of a massive amount of data about DNA bind-
ing, methylation, accessibility, transcription obtained from
a wide range of different experimental assays (e.g. chro-
matin immuno-precipitation sequencing (ChIP-seq), RNA-
seq, Dnase-seq and ATAC-seq). In addition to all of the
functionalities listed above, the NDB makes available to
the broader community of scientists a series of computa-
tional tools developed at the Center for Theoretical Bio-
logical Physics (a Frontiers of Physics Center sponsored
by the National Science Foundation). In particular, the
MEGABASE + MiChroM pipeline, allows for the predic-
tive physical simulations of the chromosomal structural en-

semble and chromosomal dynamics, starting from the input
of only epigenetic marking data.

Predicting genome organization in time and space: the
MEGABASE + MiChroM computational pipeline

The MEGABASE + MiChroM pipeline enables the study
of the structural ensembles and motion of chromosomes
through MD simulations (35). The input of the pipeline
consists of epigenetic information sourced from the En-
code database; the output consists of trajectories of
chromosomal dynamics. The two methods MEGABASE
(17) (short for Maximum Entropy Genomic Annotation
from Biomarkers Associated to Structural Ensembles) and
MiChroM (22) (short for Minimal Chromatin Model) to-
gether with their implementation have been extensively val-
idated and have been shown to produce highly accurate pre-
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Nucleosome Data Bank

A web platform to simulate and browse
the three-dimensional architecture of genomes

ndb.rice.edu



Prediction of chromosome structures for differentiated cell lines and
for immortalized leukemia cells.

Cheng et al. eLife 2020



Prediction of chromosome structures for HMEC, H1-hESC, and 
HeLa-S3.



Chromosome Structural 
Heterogeneity: No two structures are 

identical

i

j

DNA-DNA ligation map
(population averaged)

Bintu et al, Science 2018

3D structures of chromatin 
(DNA tracing/microscopy)

Rao & Huntley et al, Cell 2014 



Super-resolution imaging of 
chromatin

B. Bintu and L. Mateo….. A. Boettiger, Xiaowei Zhuang, Science

2018



Super-resolution imaging of 
chromatin

B. Bintu and L. Mateo….. A. Boettiger, Xiaowei Zhuang, Science
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Structural similarity order 
parameter:

δ = 0.165µm

log Nclosed / Nopen( ) = Eopen − Eclosed ~ 4kBT

Free energy difference between 
open and closed structures
(experiment & simulation):

Experimentally Traced Structures (Bintu et al Science 2018)
IMR90 chromosome 21: 29.37-31.32Mb

Simulated Structures (MiChroM)
IMR90 chromosome 21: 29.37-31.32Mb

Cheng et al, eLife 2020.

Distribution of Rg and Potential 
of Mean Force for Combined 
Segment 1

ANALYSIS OF CHROMATIN STRUCTURES REVEAL STRUCTURAL 
TRANSITIONS: OPEN VS. CLOSED



A relationship between gene expression and 
chromosome structure?

29.37Mb 31.32Mb

Genes primarily located in linker region



A Hierarchical Clustering of Traced Structures of IMR90 Segment 2 (chr21 20.0-21.9 Mb)
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Analysis of Experimental Traced Chromatin Structures of 
Segment 2
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A Segment 1 (29.37-31.32Mb) 

B Segment 2 (20.0-21.9Mb) 

Loop domains form globular 
lobes at the head and tail of 
Segment 1 

No CTCF-mediated loops
Random coil-like structures 

Genes

A relationship between gene expression and 
chromosome structure?



A-compartment chromatin moves to territorial 
surface

Consistent with experimental observations: Nagano, T., et al., Single-cell Hi-
C reveals cell-to-cell variability in chromosome
structure. Nature, 2013. 502(7469): p. 59-64.



Hoencamp et al., Science (2021) 

CHROMOSOME ARCHITECTURE ACROSS EVOLUTION CORRELATES 
WITH CONDENSIN II ACTIVITY

Type I architecture Type II architecture
ØCentromere clustering

ØTelomere clustering

ØTelo-to-centromere axis

ØOne or more condensin II 
subunits absent

ØChromosome 
territories

ØAll condensin II 
subunits present

Condensin II (loop-extruding enzyme) confers longitudinal 
rigidity to chromosomes and defines chromosome 
territories (Houlard et al., Nat. Cell Biol. 2015, Bauer et al. PLoS Genet. 2012; Rosin et 
al. PLoS Genet. 2018, …)

Wild Type Condensin II depletion

Rosin et al. PLoS Genet. 2018



CONDENSIN II DEPLETION LEADS TO A PHENOTYPE WITH 
CLUSTERED-CENTROMERES AND LOWER CIS-COMPACTION

Condensin II 
depleted

Condensin II depleted
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Hoencamp et al., Science (2021) 

centromere clustering
(trans-centromere interactions)

Condensin 
II depleted
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Typeclustered

centromere
scattered

centromere



MICHROM INTERACTIONS AND LENGTHWISE COMPACTION 
ACTIVITY OF CONDENSIN II

Homopolymer

Polymer connectivity 
Topology fluctuations

Flory-like two-body term

Phase separation of 
Heterochromatin (centromeres)

CTCF loops Ideal Chromosome

Lengthwise compaction
Loop extrusion activity 
(condensin II)

… …

𝛾(|i-j|)

chromosome arm centromere
ji

chromosome arm

𝛼!𝛼!𝛼"

Simplified model (competition between phase separation and lengthwise compaction):

|i-j|
low condensin II

high condensin II

𝛾(|i-j|)

𝛼"
𝛼!

low 
condensin II

high 
condensin II

higher 𝛾

Di Pierro et al., PNAS (2016); Hoencamp et al., Science (2021) 



CONDENSIN II ACTIVITY (LENGTHWISE COMPACTION) 
COUNTERACTS CENTROMERE CLUSTERING

genome with 
multiple 

chromosomes

strong chromosome 
territories

ΔC : condensin II 
inactive (low 𝛾) scattered 

centromeres (red)
centromere (red) buried in a 
chromosome territory (cyan)

weak chromosome 
territories

clustered
centromeres (red)

centromere (red) exposed due to 
weak chromosome territory (cyan)

WT : condensin II active
(high 𝛾)

Hoencamp et al., Science (2021) 
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