Synthesis of Bioactive Indole Alkaloids

Rodrigo B. Andrade
Department of Chemistry, Temple University, Philadelphia, PA 19122 (USA)
*e-mail: randrade@temple.edu

Keywords: chemical synthesis, synthetic methodology, natural products, indole alkaloids

ABSTRACT

What is the most efficient way of accessing a natural product in terms of time, cost, and effort? This overarching question has served to guide our thinking about assembling complex target molecules. Since 2006, my laboratory has been interested in the development and application of novel synthetic methods that enable rapid access to complex natural products, particularly bioactive indole alkaloids. In 2013, we reported a novel domino Michael–Mannich annulation method and applied it toward the concise synthesis of Aspidosperma alkaloid (−)-tabersonine. In addition, we have applied this method toward the first synthesis of Aspidospermatan alkaloid (+)-epi-condyfoline (unpublished). In 2016, we reported short syntheses of bis-Strychnos alkaloids (−)-sungucine, (−)-isosungucine, and (−)-strychnogucine B. Finally, efforts toward the first synthesis of bis-Aspidosperma alkaloid (−)-melodinine K will be discussed.

ACKNOWLEDGEMENTS

We gratefully acknowledge Temple University, the National Science Foundation (NSF) and the National Institutes of Health (NIH) for supporting our research.

REFERENCES